IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i12p638-d462764.html
   My bibliography  Save this article

Artificial Neural Networks in the Prediction of Genetic Merit to Flowering Traits in Bean Cultivars

Author

Listed:
  • Renato Domiciano Silva Rosado

    (Department of Statistics, Graduate Program in Applied Statistics and Biometry, Federal University of Viçosa (UFV), Viçosa 36570-900, Brazil)

  • Cosme Damião Cruz

    (Department of Statistics, Graduate Program in Applied Statistics and Biometry, Federal University of Viçosa (UFV), Viçosa 36570-900, Brazil
    Department of General Biology, Graduate Program in Genetics and Breeding, UFV, Viçosa 36570-900, Brazil)

  • Leiri Daiane Barili

    (Faculdade Centro Mato Grossense (FACEM), Sorriso 78890-000, Brazil)

  • José Eustáquio de Souza Carneiro

    (Department of General Biology, Graduate Program in Genetics and Breeding, UFV, Viçosa 36570-900, Brazil)

  • Pedro Crescêncio Souza Carneiro

    (Department of General Biology, Graduate Program in Genetics and Breeding, UFV, Viçosa 36570-900, Brazil)

  • Vinicius Quintão Carneiro

    (Department of Biology, Graduate Program in Genetics and Plant Breeding, Federal University of Lavras (UFLA), Lavras 37200-900, Brazil)

  • Jackson Tavela da Silva

    (Department of General Biology, Graduate Program in Genetics and Breeding, UFV, Viçosa 36570-900, Brazil)

  • Moyses Nascimento

    (Department of Statistics, Graduate Program in Applied Statistics and Biometry, Federal University of Viçosa (UFV), Viçosa 36570-900, Brazil
    Department of General Biology, Graduate Program in Genetics and Breeding, UFV, Viçosa 36570-900, Brazil)

Abstract

Flowering is an important agronomic trait that presents non-additive gene action. Genome-enabled prediction allow incorporating molecular information into the prediction of individual genetic merit. Artificial neural networks (ANN) recognize patterns of data and represent an alternative as a universal approximation of complex functions. In a Genomic Selection (GS) context, the ANN allows automatically to capture complicated factors such as epistasis and dominance. The objectives of this study were to predict the individual genetic merits of the traits associated with the flowering time in the common bean using the ANN approach, and to compare the predictive abilities obtained for ANN and Ridge Regression Best Linear Unbiased Predictor (RR-BLUP). We used a set of 80 bean cultivars and genotyping was performed with a set of 384 SNPs. The higher accuracy of the selective process of phenotypic values based on ANN output values resulted in a greater efficacy of the genomic estimated breeding value (GEBV). Through the root mean square error computational intelligence approaches via ANN, GEBV were shown to have greater efficacy than GS via RR-BLUP.

Suggested Citation

  • Renato Domiciano Silva Rosado & Cosme Damião Cruz & Leiri Daiane Barili & José Eustáquio de Souza Carneiro & Pedro Crescêncio Souza Carneiro & Vinicius Quintão Carneiro & Jackson Tavela da Silva & Moy, 2020. "Artificial Neural Networks in the Prediction of Genetic Merit to Flowering Traits in Bean Cultivars," Agriculture, MDPI, vol. 10(12), pages 1-11, December.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:638-:d:462764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/12/638/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/12/638/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    2. Kaul, Monisha & Hill, Robert L. & Walthall, Charles, 2005. "Artificial neural networks for corn and soybean yield prediction," Agricultural Systems, Elsevier, vol. 85(1), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vivian Welch & Christine M. Mathew & Panteha Babelmorad & Yanfei Li & Elizabeth T. Ghogomu & Johan Borg & Monserrat Conde & Elizabeth Kristjansson & Anne Lyddiatt & Sue Marcus & Jason W. Nickerson & K, 2021. "Health, social care and technological interventions to improve functional ability of older adults living at home: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    2. Persson, Petra & Qiu, Xinyao & Rossin-Slater, Maya, 2021. "Family Spillover Effects of Marginal Diagnoses: The Case of ADHD," IZA Discussion Papers 14020, Institute of Labor Economics (IZA).
    3. Menkhoff, Lukas & Miethe, Jakob, 2019. "Tax evasion in new disguise? Examining tax havens' international bank deposits," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 176, pages 53-78.
    4. Ran Abramitzky & Roy Mill & Santiago Pérez, 2020. "Linking individuals across historical sources: A fully automated approach," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 53(2), pages 94-111, April.
    5. Werner Eichhorst & Ulf Rinne, 2017. "Digital Challenges for the Welfare State," CESifo Forum, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 18(04), pages 03-08, December.
    6. Sant'Anna, Ana Claudia & Bergtold, Jason & Shanoyan, Aleksan & Caldas, Marcellus & Granco, Gabriel, 2021. "Deal or No Deal? Analysis of Bioenergy Feedstock Contract Choice with Multiple Opt-out Options and Contract Attribute Substitutability," 2021 Conference, August 17-31, 2021, Virtual 315289, International Association of Agricultural Economists.
    7. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.
    8. Erkmen Giray Aslim, 2019. "The Relationship Between Health Insurance and Early Retirement: Evidence from the Affordable Care Act," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 45(1), pages 112-140, January.
    9. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    10. Edna P. Conwi & Alexander G. Cortez & Normita Ramos, 2016. "Effects of the Dualized Training Program on the Occupational Interest of the Students Enrolled in Bachelor of Science in Hotel and Restaurant Management," Indian Journal of Commerce and Management Studies, Educational Research Multimedia & Publications,India, vol. 7(1), pages 31-36, January.
    11. Nihan Akyelken, 2017. "Mobility-Related Economic Exclusion: Accessibility and Commuting Patterns in Industrial Zones in Turkey," Social Inclusion, Cogitatio Press, vol. 5(4), pages 175-182.
    12. Youngna Choi, 2022. "Economic Stimulus and Financial Instability: Recent Case of the U.S. Household," JRFM, MDPI, vol. 15(6), pages 1-25, June.
    13. Camillia Kong & John Coggon & Michael Dunn & Penny Cooper, 2019. "Judging Values and Participation in Mental Capacity Law," Laws, MDPI, vol. 8(1), pages 1-22, February.
    14. Dreher, Axel & Fuchs, Andreas & Langlotz, Sarah, 2019. "The effects of foreign aid on refugee flows," European Economic Review, Elsevier, vol. 112(C), pages 127-147.
    15. Dindo, Pietro & Massari, Filippo, 2020. "The wisdom of the crowd in dynamic economies," Theoretical Economics, Econometric Society, vol. 15(4), November.
    16. Ferrarini, Benno & Maupin, Julie & Hinojales , Marthe, 2017. "Distributed Ledger Technologies for Developing Asia," ADB Economics Working Paper Series 533, Asian Development Bank.
    17. Andrzej Cieślik & Sarhad Hamza, 2022. "Inward FDI, IFRS Adoption and Institutional Quality: Insights from the MENA Countries," IJFS, MDPI, vol. 10(3), pages 1-19, June.
    18. Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," SciencePo Working papers Main hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," PSE-Ecole d'économie de Paris (Postprint) hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," PSE Working Papers hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Achim Truger & Andrew Wa, 2016. "The Elusive Recovery," Post-Print hal-03459084, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," Working Papers hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," SciencePo Working papers Main hal-03612850, HAL.
      • Georg Feigl & Markus Marterbauer & Miriam Rehm & Matthias Schnetzer & Sepp Zuckerstätter & Lars Nørvang Andersen & Thea Nissen & Signe Dahl & Peter Hohlfeld & Benjamin Lojak & Thomas Theobald & Achim , 2016. "The Elusive Recovery," PSE-Ecole d'économie de Paris (Postprint) hal-03612850, HAL.
    19. Billari, Francesco C. & Giuntella, Osea & Stella, Luca, 2018. "Broadband internet, digital temptations, and sleep," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 58-76.
    20. Anastasios Evgenidis & Apostolos Fasianos, 2019. "Monetary Policy and Wealth Inequalities in Great Britain: Assessing the role of unconventional policies for a decade of household data," Papers 1912.09702, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:12:p:638-:d:462764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.