IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v68y2022i3id15-2021-rae.html
   My bibliography  Save this article

Models for feature selection and efficient crop yield prediction in the groundnut production

Author

Listed:
  • Kuruguntu Mohan Krithika
  • Nachimuthu Maheswari

    (School of Computing Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India)

  • Manickam Sivagami

    (School of Computing Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu, India)

Abstract

Tamil Nadu ranks high in groundnut production in India. The yield prediction of the crop over Tamil Nadu will be highly useful in improving the efficiency of the production. This article aims to identify an efficient machine learning model to predict the groundnut crop yield and analyse the performance of the tested models. The study used the irrigation, rainfall, area and production data as factors for the groundnut crop yield across the districts of Tamil Nadu. This article identified the best set of features for training the models and studied various prediction models to evaluate the performance on the collected data. The trained and tested data were evaluated using various performance measures. The results of the study show that LASSO and ElasticNet provide the optimal results with the lowest RMSE and RRMSE values of 491.603 and 490.931 kg.ha-1, 20.68 and 20.66%, respectively. The models showed the lowest MAE and RMAE values as well (333.154 and 331.827 kg.ha-1 and 14.53%, 14.51%, respectively) when compared to other models. The identification of the right time to sow and area to irrigate through feature selection and the prediction of the yield will improve the yield of the groundnut crops. This helps farmers to make practical decisions and reap the benefits.

Suggested Citation

  • Kuruguntu Mohan Krithika & Nachimuthu Maheswari & Manickam Sivagami, 2022. "Models for feature selection and efficient crop yield prediction in the groundnut production," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 68(3), pages 131-141.
  • Handle: RePEc:caa:jnlrae:v:68:y:2022:i:3:id:15-2021-rae
    DOI: 10.17221/15/2021-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/15/2021-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/15/2021-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/15/2021-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaul, Monisha & Hill, Robert L. & Walthall, Charles, 2005. "Artificial neural networks for corn and soybean yield prediction," Agricultural Systems, Elsevier, vol. 85(1), pages 1-18, July.
    2. Safa, M. & Samarasinghe, S., 2011. "Determination and modelling of energy consumption in wheat production using neural networks: “A case study in Canterbury province, New Zealand”," Energy, Elsevier, vol. 36(8), pages 5140-5147.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    2. Taheri-Rad, Alireza & Khojastehpour, Mehdi & Rohani, Abbas & Khoramdel, Surur & Nikkhah, Amin, 2017. "Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks," Energy, Elsevier, vol. 135(C), pages 405-412.
    3. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein & Shamshirband, Shahaboddin & Hamid, Siti Hafizah Ab, 2015. "Developing a fuzzy clustering model for better energy use in farm management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 27-34.
    4. Venkatesh Paramesh & Parveen Kumar & Ranjan Parajuli & Rosa Francaviglia & Kallakeri Kannappa Manohara & Vadivel Arunachalam & Trivesh Mayekar & Sulekha Toraskar, 2023. "A Life Cycle Assessment of Rice–Rice and Rice–Cowpea Cropping Systems in the West Coast of India," Land, MDPI, vol. 12(2), pages 1-14, February.
    5. Kelvin López-Aguilar & Adalberto Benavides-Mendoza & Susana González-Morales & Antonio Juárez-Maldonado & Pamela Chiñas-Sánchez & Alvaro Morelos-Moreno, 2020. "Artificial Neural Network Modeling of Greenhouse Tomato Yield and Aerial Dry Matter," Agriculture, MDPI, vol. 10(4), pages 1-14, April.
    6. Jules F. Cacho & Jeremy Feinstein & Colleen R. Zumpf & Yuki Hamada & Daniel J. Lee & Nictor L. Namoi & DoKyoung Lee & Nicholas N. Boersma & Emily A. Heaton & John J. Quinn & Cristina Negri, 2023. "Predicting Biomass Yields of Advanced Switchgrass Cultivars for Bioenergy and Ecosystem Services Using Machine Learning," Energies, MDPI, vol. 16(10), pages 1-16, May.
    7. Olanrewaju, O.A. & Jimoh, A.A. & Kholopane, P.A., 2013. "Assessing the energy potential in the South African industry: A combined IDA-ANN-DEA (Index Decomposition Analysis-Artificial Neural Network-Data Envelopment Analysis) model," Energy, Elsevier, vol. 63(C), pages 225-232.
    8. Yeo, In-Ae & Yee, Jurng-Jae, 2014. "A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artifi," Applied Energy, Elsevier, vol. 119(C), pages 99-117.
    9. Kaur, Karman & Prasad, Narayan & Prasad, Narayan, 2021. "Modelling Input Energy Used in Wheat Production in India Using Artificial Neural Network," 2021 Conference, August 17-31, 2021, Virtual 315051, International Association of Agricultural Economists.
    10. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    11. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    12. Buratti, C. & Barbanera, M. & Palladino, D., 2014. "An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks," Applied Energy, Elsevier, vol. 120(C), pages 125-132.
    13. Hamed Rafiee & Milad Aminizadeh & Elham Mehrparvar Hosseini & Hanane Aghasafari & Ali Mohammadi, 2022. "A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    14. Bazrafshan, Ommolbanin & Ehteram, Mohammad & Moshizi, Zahra Gerkaninezhad & Jamshidi, Sajad, 2022. "Evaluation and uncertainty assessment of wheat yield prediction by multilayer perceptron model with bayesian and copula bayesian approaches," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Khoshnevisan, Benyamin & Shariati, Hanifreza Motamed & Rafiee, Shahin & Mousazadeh, Hossein, 2014. "Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 316-324.
    16. Julio R. G mez Sarduy & Percy R. Viego Felipe & Yamile D az Torres & Mario A. lvarez-Guerra Plascencia & Vladimir Sousa Santos & Dries Haeseldonckx, 2018. "A New Energy Performance Indicator for Energy Management System of a Wheat Mill Plant," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 324-330.
    17. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    18. Emerson Rodolfo Abraham & João Gilberto Mendes dos Reis & Oduvaldo Vendrametto & Pedro Luiz de Oliveira Costa Neto & Rodrigo Carlo Toloi & Aguinaldo Eduardo de Souza & Marcos de Oliveira Morais, 2020. "Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production," Agriculture, MDPI, vol. 10(10), pages 1-18, October.
    19. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    20. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:68:y:2022:i:3:id:15-2021-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.