IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i12p2228-d1537537.html
   My bibliography  Save this article

Harnessing Beneficial Microbes for Drought Tolerance: A Review of Ecological and Agricultural Innovations

Author

Listed:
  • Grzegorz Mikiciuk

    (Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, 71-434 Szczecin, Poland)

  • Tymoteusz Miller

    (Institute of Marine and Environmental Sciences, University of Szczecin, 71-415 Szczecin, Poland
    Faculty of Data Science and Information, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia)

  • Anna Kisiel

    (Institute of Marine and Environmental Sciences, University of Szczecin, 71-415 Szczecin, Poland)

  • Danuta Cembrowska-Lech

    (Institute of Biology, University of Szczecin, 71-415 Szczecin, Poland)

  • Małgorzata Mikiciuk

    (Department of Bioengineering, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, 71-434 Szczecin, Poland)

  • Adrianna Łobodzińska

    (Institute of Biology, University of Szczecin, 71-415 Szczecin, Poland
    Doctoral School of the University of Szczecin, 71-412 Szczecin, Poland)

  • Kamila Bokszczanin

    (Department of Pomology and Horticulture Economics, Institute of Horticultural Sciences SGGW, Nowoursynowska 159 Str., 02-787 Warsaw, Poland)

Abstract

Drought is an increasingly critical global challenge, significantly impacting agricultural productivity, food security, and ecosystem stability. As climate change intensifies the frequency and severity of drought events, innovative strategies are essential to enhance plant resilience and sustain agricultural systems. This review explores the vital role of beneficial microbes in conferring drought tolerance, focusing on Plant Growth-Promoting Rhizobacteria (PGPR), mycorrhizal fungi, endophytes, actinomycetes, and cyanobacteria. These microorganisms mitigate drought stress through diverse mechanisms, including osmotic adjustment, enhancement of root architecture, modulation of phytohormones, induction of antioxidant defenses, and regulation of stress-responsive gene expression. Ecological and agricultural innovations leveraging these beneficial microbes have demonstrated significant potential in bolstering drought resilience. Strategies such as soil microbiome engineering, bioaugmentation, and the integration of microbial synergies within pest management frameworks enhance ecosystem resilience and agricultural sustainability. Additionally, advancements in agricultural practices, including seed coating, soil amendments, the development of microbial consortia, and precision agriculture technologies, have validated the effectiveness and scalability of microbial interventions in diverse farming systems. Despite promising advancements, several challenges hinder the widespread adoption of microbial solutions. Environmental variability can affect microbial performance, necessitating the development of robust and adaptable strains. Scale-up and commercialization hurdles, economic constraints, and regulatory and safety considerations also pose significant barriers. Furthermore, the complex interactions between microbes, plants, and their environments require a deeper understanding to optimize microbial benefits consistently. Future research should focus on integrating cutting-edge technologies such as genomics, synthetic biology, and precision agriculture to refine and enhance microbial interventions. Collaborative efforts among academia, industry, and government are essential to bridge the gap between research and practical implementation. By addressing these challenges and harnessing microbial innovations, it is possible to develop resilient and sustainable agricultural systems capable of thriving in an increasingly water-scarce world.

Suggested Citation

  • Grzegorz Mikiciuk & Tymoteusz Miller & Anna Kisiel & Danuta Cembrowska-Lech & Małgorzata Mikiciuk & Adrianna Łobodzińska & Kamila Bokszczanin, 2024. "Harnessing Beneficial Microbes for Drought Tolerance: A Review of Ecological and Agricultural Innovations," Agriculture, MDPI, vol. 14(12), pages 1-41, December.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2228-:d:1537537
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/12/2228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/12/2228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barrios, Edmundo, 2007. "Soil biota, ecosystem services and land productivity," Ecological Economics, Elsevier, vol. 64(2), pages 269-285, December.
    2. Amrita Gupta & Udai B. Singh & Pramod K. Sahu & Surinder Paul & Adarsh Kumar & Deepti Malviya & Shailendra Singh & Pandiyan Kuppusamy & Prakash Singh & Diby Paul & Jai P. Rai & Harsh V. Singh & Madhab, 2022. "Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review," IJERPH, MDPI, vol. 19(5), pages 1-29, March.
    3. Abdul Khaliq & Shaista Perveen & Khalid H. Alamer & Muhammad Zia Ul Haq & Zaiba Rafique & Ibtisam M. Alsudays & Ashwaq T. Althobaiti & Muneera A. Saleh & Saddam Hussain & Houneida Attia, 2022. "Arbuscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    4. Gustavo Naumann & Carmelo Cammalleri & Lorenzo Mentaschi & Luc Feyen, 2021. "Increased economic drought impacts in Europe with anthropogenic warming," Nature Climate Change, Nature, vol. 11(6), pages 485-491, June.
    5. Krzysztof Rutkowski & Grzegorz P. Łysiak, 2023. "Effect of Nitrogen Fertilization on Tree Growth and Nutrient Content in Soil and Cherry Leaves ( Prunus cerasus L.)," Agriculture, MDPI, vol. 13(3), pages 1-23, February.
    6. Anamika Dubey & Diksha Saiyam & Ashwani Kumar & Abeer Hashem & Elsayed Fathi Abd_Allah & Mohammed Latif Khan, 2021. "Bacterial Root Endophytes: Characterization of Their Competence and Plant Growth Promotion in Soybean ( Glycine max (L.) Merr.) under Drought Stress," IJERPH, MDPI, vol. 18(3), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yingying & Lü, Haishen & Yagci, Ali Levent & Zhu, Yonghua & Liu, Di & Wang, Qimeng & Xu, Haiting & Pan, Ying & Su, Jianbin, 2024. "Influence of groundwater on the propagation of meteorological drought to agricultural drought during crop growth periods: A case study in Huaibei Plain," Agricultural Water Management, Elsevier, vol. 305(C).
    2. Juan Carlos Alías & José Antonio Mejías & Natividad Chaves, 2022. "Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain," Land, MDPI, vol. 11(3), pages 1-12, March.
    3. Arthur Charpentier & Molly James & Hani Ali, 2021. "Predicting Drought and Subsidence Risks in France," Papers 2107.07668, arXiv.org.
    4. Karl S. Zimmerer & Steven J. Vanek, 2016. "Toward the Integrated Framework Analysis of Linkages among Agrobiodiversity, Livelihood Diversification, Ecological Systems, and Sustainability amid Global Change," Land, MDPI, vol. 5(2), pages 1-28, April.
    5. John Taylor & Sarah Lovell, 2014. "Urban home food gardens in the Global North: research traditions and future directions," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(2), pages 285-305, June.
    6. Alberto Orgiazzi & Erica Lumini & R Henrik Nilsson & Mariangela Girlanda & Alfredo Vizzini & Paola Bonfante & Valeria Bianciotto, 2012. "Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    7. Foudi, Sébastien, 2012. "The role of farmers' property rights in soil ecosystem services conservation," Ecological Economics, Elsevier, vol. 83(C), pages 90-96.
    8. Manoj Kaushal & Mary Atieno & Sylvanus Odjo & Frederick Baijukya & Yosef Gebrehawaryat & Carlo Fadda, 2025. "Nature-Positive Agriculture—A Way Forward Towards Resilient Agrifood Systems," Sustainability, MDPI, vol. 17(3), pages 1-25, January.
    9. Krzysztof Rutkowski & Grzegorz P. Łysiak, 2023. "Influence of Mulching on Replantation Disease in Sour Cherry Orchard," Agriculture, MDPI, vol. 13(8), pages 1-30, August.
    10. Maëva Labouyrie & Cristiano Ballabio & Ferran Romero & Panos Panagos & Arwyn Jones & Marc W. Schmid & Vladimir Mikryukov & Olesya Dulya & Leho Tedersoo & Mohammad Bahram & Emanuele Lugato & Marcel G. , 2023. "Patterns in soil microbial diversity across Europe," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    11. Plaas, Elke & Meyer-Wolfarth, Friederike & Banse, Martin & Bengtsson, Jan & Bergmann, Holger & Faber, Jack & Potthoff, Martin & Runge, Tania & Schrader, Stefan & Taylor, Astrid, 2019. "Towards valuation of biodiversity in agricultural soils: A case for earthworms," Ecological Economics, Elsevier, vol. 159(C), pages 291-300.
    12. Wenyue Song & Hongqi Wu & Zequn Xiang & Yanmin Fan & Shuaishuai Wang & Jia Guo, 2024. "Effects of Plastic Mulch Residue on Soil Fungal Communities in Cotton," Agriculture, MDPI, vol. 14(8), pages 1-16, August.
    13. Sébastien Foudi, 2012. "Exploitation of soil biota ecosystem services in agriculture: a bioeconomic approach," Working Papers 2012-02, BC3.
    14. Mohammad Shahid & Mohammad Tarique Zeyad & Asad Syed & Udai B. Singh & Abdullah Mohamed & Ali H. Bahkali & Abdallah M. Elgorban & John Pichtel, 2022. "Stress-Tolerant Endophytic Isolate Priestia aryabhattai BPR-9 Modulates Physio-Biochemical Mechanisms in Wheat ( Triticum aestivum L.) for Enhanced Salt Tolerance," IJERPH, MDPI, vol. 19(17), pages 1-26, September.
    15. E. Sayad & S.M. Hosseini & V. Hosseini & M.-H. Salehe-Shooshtari, 2012. "Soil macrofauna in relation to soil and leaf litter properties in tree plantations," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 58(4), pages 170-180.
    16. Nadia Glæsner & Katharina Helming & Wim De Vries, 2014. "Do Current European Policies Prevent Soil Threats and Support Soil Functions?," Sustainability, MDPI, vol. 6(12), pages 1-26, December.
    17. Nassima Amiri & Rachid Lahlali & Said Amiri & Moussa EL Jarroudi & Mohammed Yacoubi Khebiza & Mohammed Messouli, 2021. "Development of an Integrated Model to Assess the Impact of Agricultural Practices and Land Use on Agricultural Production in Morocco under Climate Stress over the Next Twenty Years," Sustainability, MDPI, vol. 13(21), pages 1-23, October.
    18. Taili Chen & Zhonglin Shi & Anbang Wen & Lina Li & Wenkai Wang, 2023. "The Role of Paddy Fields in the Sediment of a Small Agricultural Catchment in the Three Gorges Reservoir Region by the Sediment Fingerprinting Method," Land, MDPI, vol. 12(4), pages 1-14, April.
    19. Senicovscaia, Irina, 2013. "Conservation of invertebrates’ biodiversity in soils of the Republic of Moldova," MPRA Paper 53453, University Library of Munich, Germany.
    20. Romy Carmen Brockhoff & Robbert Biesbroek & Bregje Bolt, 2022. "Drought Governance in Transition: a Case Study of the Meuse River Basin in the Netherlands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2623-2638, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:12:p:2228-:d:1537537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.