IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7840-d849052.html
   My bibliography  Save this article

Arbuscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction

Author

Listed:
  • Abdul Khaliq

    (Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan)

  • Shaista Perveen

    (Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan)

  • Khalid H. Alamer

    (Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia)

  • Muhammad Zia Ul Haq

    (Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan)

  • Zaiba Rafique

    (Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan)

  • Ibtisam M. Alsudays

    (Department of Biology, College of Science and Arts, Qassim University, Unaizah 56452, Saudi Arabia)

  • Ashwaq T. Althobaiti

    (Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Muneera A. Saleh

    (Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Saddam Hussain

    (Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan)

  • Houneida Attia

    (Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
    Laboratoire Productivité Végétale et Contraintes Environnementales, Département des Sciences Biologiques, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092, Tunisia)

Abstract

Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with plants; a symbiotic relationship is one in which both partners benefit from each other. Fungi benefit plants by improving uptake of water and nutrients, especially phosphorous, while plants provide 10–20% of their photosynthates to fungus. AMF tend to make associations with 85% of plant families and play a significant role in the sustainability of an ecosystem. Plants’ growth and productivity are negatively affected by various biotic and abiotic stresses. AMF proved to enhance plants’ tolerance against various stresses, such as drought, salinity, high temperature, and heavy metals. There are some obstacles impeding the beneficial formation of AMF communities, such as heavy tillage practices, high fertilizer rates, unchecked pesticide application, and monocultures. Keeping in view the stress-extenuation potential of AMF, the present review sheds light on their role in reducing erosion, nutrient leaching, and tolerance to abiotic stresses. In addition, recent advances in commercial production of AMF are discussed.

Suggested Citation

  • Abdul Khaliq & Shaista Perveen & Khalid H. Alamer & Muhammad Zia Ul Haq & Zaiba Rafique & Ibtisam M. Alsudays & Ashwaq T. Althobaiti & Muneera A. Saleh & Saddam Hussain & Houneida Attia, 2022. "Arbuscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7840-:d:849052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gholamhoseini, M. & Ghalavand, A. & Dolatabadian, A. & Jamshidi, E. & Khodaei-Joghan, A., 2013. "Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress," Agricultural Water Management, Elsevier, vol. 117(C), pages 106-114.
    2. Astrit Balliu & Glenda Sallaku & Boris Rewald, 2015. "AMF Inoculation Enhances Growth and Improves the Nutrient Uptake Rates of Transplanted, Salt-Stressed Tomato Seedlings," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soundarya Rajapitamahuni & Bo Ram Kang & Tae Kwon Lee, 2023. "Exploring the Roles of Arbuscular Mycorrhizal Fungi in Plant–Iron Homeostasis," Agriculture, MDPI, vol. 13(10), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pirzad, Alireza & Mohammadzadeh, Sevil, 2018. "Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris)," Agricultural Water Management, Elsevier, vol. 204(C), pages 1-10.
    2. Hussain, Mubshar & Farooq, Shahid & Hasan, Waseem & Ul-Allah, Sami & Tanveer, Mohsin & Farooq, Muhammad & Nawaz, Ahmad, 2018. "Drought stress in sunflower: Physiological effects and its management through breeding and agronomic alternatives," Agricultural Water Management, Elsevier, vol. 201(C), pages 152-166.
    3. Ioannis Roussis & Dimitrios Beslemes & Chariklia Kosma & Vassilios Triantafyllidis & Anastasios Zotos & Evangelia Tigka & Antonios Mavroeidis & Stella Karydogianni & Varvara Kouneli & Ilias Travlos & , 2022. "The Influence of Arbuscular Mycorrhizal Fungus Rhizophagus irregularis on the Growth and Quality of Processing Tomato ( Lycopersicon esculentum Mill.) Seedlings," Sustainability, MDPI, vol. 14(15), pages 1-12, July.
    4. Eriola Veselaj & Glenda Sallaku & Astrit Balliu, 2018. "Tripartite Relationships in Legume Crops Are Plant-Microorganism-Specific and Strongly Influenced by Salinity," Agriculture, MDPI, vol. 8(8), pages 1-14, July.
    5. Hazrati, Saeid & Tahmasebi-Sarvestani, Zeinolabedin & Mokhtassi-Bidgoli, Ali & Modarres-Sanavy, Seyed Ali Mohammad & Mohammadi, Hamid & Nicola, Silvana, 2017. "Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L," Agricultural Water Management, Elsevier, vol. 181(C), pages 66-72.
    6. Samira Ould Amer & Toufik Aliat & Dmitry E. Kucher & Oussama A. Bensaci & Nazih Y. Rebouh, 2023. "Investigating the Potential of Arbuscular Mycorrhizal Fungi in Mitigating Water Deficit Effects on Durum Wheat ( Triticum durum Desf.)," Agriculture, MDPI, vol. 13(3), pages 1-16, February.
    7. Mengying Li & Liqun Cai, 2021. "Biochar and Arbuscular Mycorrhizal Fungi Play Different Roles in Enabling Maize to Uptake Phosphorus," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    8. Bi, Yinli & Qiu, Lang & Zhakypbek, Yryszhan & Jiang, Bin & Cai, Yun & Sun, Huan, 2018. "Combination of plastic film mulching and AMF inoculation promotes maize growth, yield and water use efficiency in the semiarid region of Northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 278-286.
    9. Shengchun Li & Huoyun Chen & Shuochen Jiang & Fengqin Hu & Danying Xing & Bin Du, 2023. "Selenium and Nitrogen Fertilizer Management Improves Potato Root Function, Photosynthesis, Yield and Selenium Enrichment," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    10. Wang, Weiyan & Guo, Wenjia & Dong, Jiangyao & Zhang, Houping & Liao, Yuncheng & Wen, Xiaoxia, 2024. "Ridge-furrow planting patterns with film mulching improve water use efficiency by enhancing arbuscular mycorrhizal fungi in the rhizosphere and endophyte of summer maize," Agricultural Water Management, Elsevier, vol. 296(C).
    11. Murugesan Chandrasekaran, 2020. "A Meta-Analytical Approach on Arbuscular Mycorrhizal Fungi Inoculation Efficiency on Plant Growth and Nutrient Uptake," Agriculture, MDPI, vol. 10(9), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7840-:d:849052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.