IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v305y2024ics037837742400458x.html
   My bibliography  Save this article

Influence of groundwater on the propagation of meteorological drought to agricultural drought during crop growth periods: A case study in Huaibei Plain

Author

Listed:
  • Xu, Yingying
  • Lü, Haishen
  • Yagci, Ali Levent
  • Zhu, Yonghua
  • Liu, Di
  • Wang, Qimeng
  • Xu, Haiting
  • Pan, Ying
  • Su, Jianbin

Abstract

Groundwater plays a key role in regulating the transition from meteorological droughts (MD) to agricultural droughts (AD), though its specific influence during crop growth remains unclear. In this study, daily effective root zone soil moisture and annual yield for winter wheat and summer maize were simulated using Aquacrop model under four scenarios: Scenario 1 (groundwater level at 1 m depth), Scenario 2 (groundwater level at 2 m depth), Scenario 3 (groundwater level at 3 m depth), and Scenario 4 (groundwater level at 4 m depth). Based on the simulated data, the propagation probabilities, propagation times (PT), translation rates of drought events, and changes in drought characteristics under the four scenarios were calculated, revealing the specific impact of groundwater levels on the propagation from MD to AD. The results indicated that (1) the probability of drought propagation increased with either a decrease in the groundwater level or an increase in the MD severity. Notably, a decrease in groundwater level from 1 m to 2 m depth results in a substantial rise in propagation probability, with an average increase of 114.0 % and 118.9 % for winter wheat and summer maize, respectively. (2) PT was shortened by 2–4 days for each 1 m drop in the groundwater level. When the severity of MD intensified from severe to extreme, the PT was shortened by an average of 8 days and 10 days during the phenological stages of summer maize and winter wheat, respectively. Both crops exhibited shorter PTs during the emergence, grouting, and maturity stages, and longer PTs during the tillering and heading stages. (3) Overall, the decline of groundwater levels accelerates the translation rate of drought events. In addition, longer and stronger drought characteristics were observed especially at low levels of groundwater. (4) The optimal groundwater level was found to be about 1 m and 2 m for winter wheat and summer maize in the Huaibei Plain, respectively. These findings provide valuable insights for enhancing drought resilience and optimizing irrigation and groundwater management in the Huaibei Plain.

Suggested Citation

  • Xu, Yingying & Lü, Haishen & Yagci, Ali Levent & Zhu, Yonghua & Liu, Di & Wang, Qimeng & Xu, Haiting & Pan, Ying & Su, Jianbin, 2024. "Influence of groundwater on the propagation of meteorological drought to agricultural drought during crop growth periods: A case study in Huaibei Plain," Agricultural Water Management, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s037837742400458x
    DOI: 10.1016/j.agwat.2024.109122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837742400458X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.109122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gou, Qiqi & Zhu, Yonghua & Horton, Robert & Lü, Haishen & Wang, Zhenlong & Su, Jianbin & Cui, Chenyun & Zhang, Haoqiang & Wang, Xiaoyi & Zheng, Jingyao & Yuan, Fei, 2020. "Effect of climate change on the contribution of groundwater to the root zone of winter wheat in the Huaibei Plain of China," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Xing, Wanqiu & Yang, Lilin & Wang, Weiguang & Yu, Zhongbo & Shao, Quanxi & Xu, Shiqin & Fu, Jianyu, 2023. "Environmental controls on carbon and water fluxes of a wheat-maize rotation cropland over the Huaibei Plain of China," Agricultural Water Management, Elsevier, vol. 283(C).
    3. Wellens, Joost & Raes, Dirk & Traore, Farid & Denis, Antoine & Djaby, Bakary & Tychon, Bernard, 2013. "Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 127(C), pages 40-47.
    4. Yu, Chaoqing & Huang, Xiao & Chen, Han & Huang, Guorui & Ni, Shaoqiang & Wright, Jonathon S. & Hall, Jim & Ciais, Philippe & Zhang, Jie & Xiao, Yuchen & Sun, Zhanli & Wang, Xuhui & Yu, Le, 2018. "Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 6, pages 689-703.
    5. Zhao, Jie & Han, Tong & Wang, Chong & Jia, Hao & Worqlul, Abeyou W. & Norelli, Nicole & Zeng, Zhaohai & Chu, Qingquan, 2020. "Optimizing irrigation strategies to synchronously improve the yield and water productivity of winter wheat under interannual precipitation variability in the North China Plain," Agricultural Water Management, Elsevier, vol. 240(C).
    6. Li, Yifei & Huang, Shengzhi & Wang, Hanye & Zheng, Xudong & Huang, Qiang & Deng, Mingjiang & Peng, Jian, 2022. "High-resolution propagation time from meteorological to agricultural drought at multiple levels and spatiotemporal scales," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Zhang, Wenchao & Zhu, Jianqiang & Zhou, Xinguo & Li, Fahu, 2018. "Effects of shallow groundwater table and fertilization level on soil physico-chemical properties, enzyme activities, and winter wheat yield," Agricultural Water Management, Elsevier, vol. 208(C), pages 307-317.
    8. Gustavo Naumann & Carmelo Cammalleri & Lorenzo Mentaschi & Luc Feyen, 2021. "Increased economic drought impacts in Europe with anthropogenic warming," Nature Climate Change, Nature, vol. 11(6), pages 485-491, June.
    9. Woonsup Choi & Susan Ann Borchardt & Jinmu Choi, 2022. "Human Influences and Decreasing Synchrony between Meteorological and Hydrological Droughts in Wisconsin Since the 1980s," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 112(1), pages 36-55, January.
    10. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    11. F. Acebes & J. M. González-Varona & A. López-Paredes & J. Pajares, 2024. "Beyond probability-impact matrices in project risk management: A quantitative methodology for risk prioritisation," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    12. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    13. Fernando Acebes & Jos'e Manuel Gonz'alez-Varona & Adolfo L'opez-Paredes & Javier Pajares, 2024. "Beyond probability-impact matrices in project risk management: A quantitative methodology for risk prioritisation," Papers 2405.20679, arXiv.org.
    14. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qingsong & Sun, Jiahao & Zhang, Guangxin & Liu, Xuemei & Wu, Yanfeng & Sun, Jingxuan & Hu, Boting, 2023. "Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management," Agricultural Water Management, Elsevier, vol. 285(C).
    2. He, Pingru & Yu, Shuang’en & Ding, Jihui & Ma, Tao & Li, Jin’gang & Dai, Yan & Chen, Kaiwen & Peng, Suhan & Zeng, Guangquan & Guo, Shuaishuai, 2024. "Multi-objective optimization of farmland water level and nitrogen fertilization management for winter wheat cultivation under waterlogging conditions based on TOPSIS-Entropy," Agricultural Water Management, Elsevier, vol. 297(C).
    3. Alvar-Beltrán, Jorge & Saturnin, Coulibaly & Grégoire, Baki & Camacho, Jose Luís & Dao, Abdalla & Migraine, Jean Baptiste & Marta, Anna Dalla, 2023. "Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    5. da Silva, Andre Luiz Biscaia Ribeiro & Dias, Henrique Boriolo & Gupta, Rishabh & Zotarelli, Lincoln & Asseng, Senthold & Dukes, Michael D. & Porter, Cheryl & Hoogenboom, Gerrit, 2024. "Assessing the impact of irrigation and nitrogen management on potato performance under varying climate in the state of Florida, USA," Agricultural Water Management, Elsevier, vol. 295(C).
    6. Xiaopei Tang & Haijun Liu & Li Yang & Lun Li & Jie Chang, 2022. "Energy Balance, Microclimate, and Crop Evapotranspiration of Winter Wheat ( Triticum aestivum L.) under Sprinkler Irrigation," Agriculture, MDPI, vol. 12(7), pages 1-23, June.
    7. Feng Huang & Baoguo Li, 2020. "What is the Redline Water Withdrawal for Crop Production in China?—Projection to 2030 Derived from the Past Twenty-Year Trajectory," Sustainability, MDPI, vol. 12(10), pages 1-14, May.
    8. Arthur Charpentier & Molly James & Hani Ali, 2021. "Predicting Drought and Subsidence Risks in France," Papers 2107.07668, arXiv.org.
    9. Guimbeau, Amanda & Ji, Xinde James & Menon, Nidhiya, 2024. "Climate Shocks, Intimate Partner Violence, and the Protective Role of Climate-Resilience Projects," IZA Discussion Papers 17529, Institute of Labor Economics (IZA).
    10. Kaiwen Chen & Shuang’en Yu & Tao Ma & Jihui Ding & Pingru He & Yao Li & Yan Dai & Guangquan Zeng, 2022. "Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D," Agriculture, MDPI, vol. 12(7), pages 1-18, June.
    11. Robert Becker Pickson & Ge He & Elliot Boateng, 2022. "Impacts of climate change on rice production: evidence from 30 Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3907-3925, March.
    12. Xintian Ma & Xiangyi Wang & Yingbin He & Yan Zha & Huicong Chen & Shengnan Han, 2023. "Variability in Estimating Crop Model Genotypic Parameters: The Impact of Different Sampling Methods and Sizes," Agriculture, MDPI, vol. 13(12), pages 1-16, November.
    13. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    14. You, Yongliang & Song, Ping & Yang, Xianlong & Zheng, Yapeng & Dong, Li & Chen, Jing, 2022. "Optimizing irrigation for winter wheat to maximize yield and maintain high-efficient water use in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Ricardo Flores-Marquez & Jesús Vera-Vílchez & Patricia Verástegui-Martínez & Sphyros Lastra & Richard Solórzano-Acosta, 2024. "An Evaluation of Dryland Ulluco Cultivation Yields in the Face of Climate Change Scenarios in the Central Andes of Peru by Using the AquaCrop Model," Sustainability, MDPI, vol. 16(13), pages 1-22, June.
    16. Waqas, Muhammad Sohail & Cheema, Muhammad Jehanzeb Masud & Hussain, Saddam & Ullah, Muhammad Kaleem & Iqbal, Muhammad Mazhar, 2021. "Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters," Agricultural Water Management, Elsevier, vol. 245(C).
    17. Hongfang Li & Jian Wang & Hu Liu & Zhanmin Wei & Henglu Miao, 2022. "Quantitative Analysis of Temporal and Spatial Variations of Soil Salinization and Groundwater Depth along the Yellow River Saline–Alkali Land," Sustainability, MDPI, vol. 14(12), pages 1-13, June.
    18. Gao, Ya & Sun, Chen & Ramos, Tiago B. & Huo, Zailin & Huang, Guanhua & Xu, Xu, 2023. "Modeling nitrogen dynamics and biomass production in rice paddy fields of cold regions with the ORYZA-N model," Ecological Modelling, Elsevier, vol. 475(C).
    19. Fouad H. Saeed & Mahmoud S. Al-Khafaji & Furat A. Mahmood Al-Faraj, 2021. "Sensitivity of Irrigation Water Requirement to Climate Change in Arid and Semi-Arid Regions towards Sustainable Management of Water Resources," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    20. Traore, Seydou & Zhang, Lei & Guven, Aytac & Fipps, Guy, 2020. "Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel," Agricultural Water Management, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s037837742400458x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.