IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i2p269-d748807.html
   My bibliography  Save this article

Soil Aeration and Plastic Film Mulching Increase the Yield Potential and Quality of Tomato ( Solanum lycopersicum )

Author

Listed:
  • Yuan Li

    (Northwest Land and Resources Research Center, Shaanxi Normal University, Xi’an 710119, China)

  • Zhenxing Zhang

    (Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun 130024, China)

  • Jingwei Wang

    (College of Resources and Environment, Shanxi University of Finance and Economics, Taiyuan 030006, China)

  • Mingzhi Zhang

    (Henan Provincial Water Conservancy Research Institute, Zhengzhou 450000, China)

Abstract

Soil aeration and plastic film mulching have been reported to accelerate plant growth and increase fruit yield by improving the rhizosphere soil–air environment. The aim of this study was to investigate plant growth, fruit yield, irrigation water-use efficiency (IWUE) and fruit quality in response to a micro/nano-bubble aeration (MNBA) system and a subsurface artificial air layer aeration system (SAALA) under different treatments. The results indicated that both MNBA and SAALA positively influenced the plant dry weight, fruit yield, IWUE and fruit quality. In comparison with the no aeration treatment, the MNBA treatment increased the dry matter accumulation, fruit yield, IWUE, lycopene content and soluble protein content by 7.1%, 9.0%, 7.1%, 6.2% and 16.2%, respectively. Plastic film mulching (PFM) significantly improved the total dry weight, fruit yield and IWUE during both seasons. The increased yield in response to soil aeration during autumn was significantly greater than that during spring, and the yield increase in response to PFM was significantly greater in spring than in autumn. Moreover, the nutrition indices in response to both soil aeration and PFM were more significant during spring than autumn. Taking into account costs, efficiency and benefits, the optimal treatment was the MNBA and full (F) PFM combination.

Suggested Citation

  • Yuan Li & Zhenxing Zhang & Jingwei Wang & Mingzhi Zhang, 2022. "Soil Aeration and Plastic Film Mulching Increase the Yield Potential and Quality of Tomato ( Solanum lycopersicum )," Agriculture, MDPI, vol. 12(2), pages 1-16, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:269-:d:748807
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/2/269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/2/269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuklik, Vaclav & Hoang, Thai Dai, 2014. "Soil moisture regimes under point irrigation," Agricultural Water Management, Elsevier, vol. 134(C), pages 42-49.
    2. Friedman, S.P. & Naftaliev, B., 2012. "A survey of the aeration status of drip-irrigated orchards," Agricultural Water Management, Elsevier, vol. 115(C), pages 132-147.
    3. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ma, Xiangcheng & Ahmad, Irshad & Adnan, Muhammad & Gerard, Rushingabigwi & Ren, Xiaolong & Zhang, Peng & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2018. "Interactive effects of plastic film mulching with supplemental irrigation on winter wheat photosynthesis, chlorophyll fluorescence and yield under simulated precipitation conditions," Agricultural Water Management, Elsevier, vol. 207(C), pages 1-14.
    4. Jia, Qianmin & Sun, Lefeng & Ali, Shahzad & Zhang, Yan & Liu, Donghua & Kamran, Muhammad & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong, 2018. "Effect of planting density and pattern on maize yield and rainwater use efficiency in the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 202(C), pages 19-32.
    5. Zhou, Yunpeng & Zhou, Bo & Xu, Feipeng & Muhammad, Tahir & Li, Yunkai, 2019. "Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Ben-Noah, I. & Friedman, S.P., 2016. "Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments," Agricultural Water Management, Elsevier, vol. 176(C), pages 222-233.
    7. Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
    8. Nangare, D.D. & Singh, Yogeshwar & Kumar, P. Suresh & Minhas, P.S., 2016. "Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis," Agricultural Water Management, Elsevier, vol. 171(C), pages 73-79.
    9. Lu, Jia & Shao, Guangcheng & Cui, Jintao & Wang, Xiaojun & Keabetswe, Larona, 2019. "Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 222(C), pages 301-312.
    10. Zhang, Yanqun & Wang, Jiandong & Gong, Shihong & Xu, Di & Sui, Juan & Wu, Zhongdong & Mo, Yan, 2018. "Effects of film mulching on evapotranspiration, yield and water use efficiency of a maize field with drip irrigation in Northeastern China," Agricultural Water Management, Elsevier, vol. 205(C), pages 90-99.
    11. Pendergast, L. & Bhattarai, S.P. & Midmore, D.J., 2019. "Evaluation of aerated subsurface drip irrigation on yield, dry weight partitioning and water use efficiency of a broad-acre chickpea (Cicer arietinum, L.) in a vertosol," Agricultural Water Management, Elsevier, vol. 217(C), pages 38-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mihai Cărbunar & Olimpia Mintaș & Nicu Cornel Sabău & Ioana Borza & Alina Stanciu & Ana Pereș & Adelina Venig & Mircea Curilă & Mihaela Lavinia Cărbunar & Teodora Vidican & Cristian Oneț, 2022. "Effectiveness of Measures to Reduce the Influence of Global Climate Change on Tomato Cultivation in Solariums—Case Study: Crișurilor Plain, Bihor, Romania," Agriculture, MDPI, vol. 12(5), pages 1-26, April.
    2. Wang, Tianyu & Wang, Zhenhua & Zhang, Jinzhu & Ma, Kai, 2023. "Application effect of different oxygenation methods with mulched drip irrigation system in Xinjiang," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Li & Hao Li & Jinshan Li & Xiuqiao Huang & Yang Liu & Yue Jiang, 2022. "Effect of Aeration on Blockage Regularity and Microbial Diversity of Blockage Substance in Drip Irrigation Emitter," Agriculture, MDPI, vol. 12(11), pages 1-22, November.
    2. Zhang, Peng & Wei, Ting & Han, Qingfang & Ren, Xiaolong & Jia, Zhikuan, 2020. "Effects of different film mulching methods on soil water productivity and maize yield in a semiarid area of China," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Wu, You & Si, Wei & Yan, Shicheng & Wu, Lifeng & Zhao, Wenju & Zhang, Jiale & Zhang, Fucang & Fan, Junliang, 2023. "Water consumption, soil nitrate-nitrogen residue and fruit yield of drip-irrigated greenhouse tomato under various irrigation levels and fertilization practices," Agricultural Water Management, Elsevier, vol. 277(C).
    4. Chen, Ning & Li, Xianyue & Šimůnek, Jirí & Shi, Haibin & Ding, Zongjiang & Peng, Zunyuan, 2019. "Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field," Agricultural Water Management, Elsevier, vol. 226(C).
    5. Ben-Noah, Ilan & Nitsan, Ido & Cohen, Ben & Kaplan, Guy & Friedman, Shmulik P., 2021. "Soil aeration using air injection in a citrus orchard with shallow groundwater," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Zhu, Jinjin & Niu, Wenquan & Zhang, Zhenhua & Siddique, Kadambot H.M. & Dan Sun, & Yang, Runya, 2022. "Distinct roles for soil bacterial and fungal communities associated with the availability of carbon and phosphorus under aerated drip irrigation," Agricultural Water Management, Elsevier, vol. 274(C).
    7. Li, Bo & Wim, Voogt & Shukla, Manoj Kumar & Du, Taisheng, 2021. "Drip irrigation provides a trade-off between yield and nutritional quality of tomato in the solar greenhouse," Agricultural Water Management, Elsevier, vol. 249(C).
    8. Chu, Xiaosheng & Flerchinger, Gerald N. & Ma, Liwang & Fang, Quanxiao & Malone, Robert W. & Yu, Qiang & He, Jianqiang & Wang, Naijiang & Feng, Hao & Zou, Yufeng, 2022. "Development of RZ-SHAW for simulating plastic mulch effects on soil water, soil temperature, and surface energy balance in a maize field," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Rui Li & Qibiao Han & Conghui Dong & Xi Nan & Hao Li & Hao Sun & Hui Li & Peng Li & Yawei Hu, 2023. "Effect and Mechanism of Micro-Nano Aeration Treatment on a Drip Irrigation Emitter Based on Groundwater," Agriculture, MDPI, vol. 13(11), pages 1-17, October.
    10. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Yan Zhu & Huanjie Cai & Libing Song & Xiaowen Wang & Zihui Shang & Yanan Sun, 2020. "Aerated Irrigation of Different Irrigation Levels and Subsurface Dripper Depths Affects Fruit Yield, Quality and Water Use Efficiency of Greenhouse Tomato," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    12. Zhang, Wang & Tian, Yong & Sun, Zan & Zheng, Chunmiao, 2021. "How does plastic film mulching affect crop water productivity in an arid river basin?," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Zhenzhen Yu & Chun Wang & Huafen Zou & Hongxuan Wang & Hailiang Li & Haitian Sun & Deshui Yu, 2022. "The Effects of Aerated Irrigation on Soil Respiration and the Yield of the Maize Root Zone," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    14. Ben-Noah, I. & Friedman, S.P., 2016. "Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments," Agricultural Water Management, Elsevier, vol. 176(C), pages 222-233.
    15. Qu, Zhaoming & Chen, Qi & Feng, Haojie & Hao, Miao & Niu, Guoliang & Liu, Yanli & Li, Chengliang, 2022. "Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 261(C).
    16. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    17. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality," IJERPH, MDPI, vol. 17(3), pages 1-18, January.
    18. Honghui SANG & Xiyun JIAO & Shufang WANG & Weihua GUO & Mohamed Khaled SALAHOU & Kaihua LIU, 2018. "Effects of micro-nano bubble aerated irrigation and nitrogen fertilizer level on tillering, nitrogen uptake and utilization of early rice," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(7), pages 297-302.
    19. Li, Cheng & Luo, Xiaoqi & Li, Yue & Wang, Naijiang & Zhang, Tibin & Dong, Qin’ge & Feng, Hao & Zhang, Wenxin & Siddique, Kadambot H.M., 2023. "Ridge planting with transparent plastic mulching improves maize productivity by regulating the distribution and utilization of soil water, heat, and canopy radiation in arid irrigation area," Agricultural Water Management, Elsevier, vol. 280(C).
    20. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:269-:d:748807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.