IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1383-d905970.html
   My bibliography  Save this article

Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change?

Author

Listed:
  • Małgorzata Holka

    (Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection—National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland)

  • Jolanta Kowalska

    (Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection—National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland)

  • Magdalena Jakubowska

    (Department of Monitoring and Signalling of Agrophages, Institute of Plant Protection—National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland)

Abstract

In the face of a changing climate, intensive efforts are needed for limiting the global temperature increase to 1.5 °C. Agricultural production has the potential to play an important role in mitigating climate change. It is necessary to optimize all of the agricultural practices that have high levels of greenhouse gas (GHG) emissions. Among the plant production processes, mineral fertilization is of the greatest importance in the formation of the carbon footprint (CF) of crops. There are many possibilities for reducing GHG emissions from the application of fertilizers. Further benefits in reducing the CF can be obtained through combining tillage treatments, reduced and no-till technologies, and the cultivation of catch crops and leguminous plants. Organic farming has the potential for reducing GHG emissions and improving organic carbon sequestration. This system eliminates synthetic nitrogen fertilizers and thus could lower global agricultural GHG emissions. Organic farming could result in a higher soil organic carbon content compared to non-organic systems. When used together with other environmentally friendly farming practices, significant reductions of GHG emissions can be achieved.

Suggested Citation

  • Małgorzata Holka & Jolanta Kowalska & Magdalena Jakubowska, 2022. "Reducing Carbon Footprint of Agriculture—Can Organic Farming Help to Mitigate Climate Change?," Agriculture, MDPI, vol. 12(9), pages 1-21, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1383-:d:905970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adam Choryński & Iwona Pińskwar & Dariusz Graczyk & Michał Krzyżaniak, 2022. "The Emergence of Different Local Resilience Arrangements Regarding Extreme Weather Events in Small Municipalities—A Case Study from the Wielkopolska Region, Poland," Sustainability, MDPI, vol. 14(4), pages 1-25, February.
    2. Beckman, Jayson & Riche, Stephanie, 2015. "Changes To The Natural Gas, Corn, And Fertilizer Price Relationships From The Biofuels Era," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 47(4), pages 494-509, November.
    3. Kishan Mahmud & Dinesh Panday & Anaas Mergoum & Ali Missaoui, 2021. "Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    4. Piotr Gołasa & Marcin Wysokiński & Wioletta Bieńkowska-Gołasa & Piotr Gradziuk & Magdalena Golonko & Barbara Gradziuk & Agnieszka Siedlecka & Arkadiusz Gromada, 2021. "Sources of Greenhouse Gas Emissions in Agriculture, with Particular Emphasis on Emissions from Energy Used," Energies, MDPI, vol. 14(13), pages 1-20, June.
    5. Tom O’Donoghue & Budiman Minasny & Alex McBratney, 2022. "Regenerative Agriculture and Its Potential to Improve Farmscape Function," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    6. Konrad Prandecki & Wioletta Wrzaszcz & Marek Zieliński, 2021. "Environmental and Climate Challenges to Agriculture in Poland in the Context of Objectives Adopted in the European Green Deal Strategy," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    7. Khan M. R. Taufique & Kristian S. Nielsen & Thomas Dietz & Rachael Shwom & Paul C. Stern & Michael P. Vandenbergh, 2022. "Revisiting the promise of carbon labelling," Nature Climate Change, Nature, vol. 12(2), pages 132-140, February.
    8. Wrzaszcz, Wioletta & Prandecki, Konrad, 2020. "Agriculture and The European Green Deal," Problems of Agricultural Economics / Zagadnienia Ekonomiki Rolnej 311273, Institute of Agricultural and Food Economics - National Research Institute (IAFE-NRI).
    9. Salvatore Camposeo & Gaetano Alessandro Vivaldi & Giovanni Russo & Francesca Maria Melucci, 2022. "Intensification in Olive Growing Reduces Global Warming Potential under Both Integrated and Organic Farming," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jolanta Kowalska & Kinga Matysiak, 2023. "Advances in Crop Protection in Organic Farming System," Agriculture, MDPI, vol. 13(10), pages 1-5, October.
    2. Clayton Pereira de Sá & Regina Negri Pagani & André Luiz Przybysz & Fabiane Florencio de Souza & David Nunes Resende & João Luiz Kovaleski, 2025. "Towards the Concept of Smart Municipality: Agribusiness Model Integrating Rural and Urban Areas for Organic Food Production: A Review," Sustainability, MDPI, vol. 17(3), pages 1-26, January.
    3. Xiaogeng Niu & Meiyu Liu & Zhenxing Tian & Anguo Chen, 2022. "Research on the Impact of Agricultural Financial Support on Agricultural Carbon Compensation Rate," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    4. Jörg Gerke, 2025. "Reducing Greenhouse Gas Emissions from Arable Land and Grassland: The Case for Organic Farming—A Critical Review," Sustainability, MDPI, vol. 17(5), pages 1-17, February.
    5. Mosadegh Sedghy, B. & Nematollahi, Mohammadreza & Tajbakhsh, Alireza, 2024. "Market dynamics between retail channels and short food supply chains: A case of organic fruits," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    6. Tao Liang & Weilin Tao & Yan Wang & Na Zhou & Wei Hu & Tao Zhang & Dunxiu Liao & Xinping Chen & Xiaozhong Wang, 2023. "The Extension of Vegetable Production to High Altitudes Increases the Environmental Cost and Decreases Economic Benefits in Subtropical Regions," Land, MDPI, vol. 12(3), pages 1-15, March.
    7. Shulong Li & Zhizhang Wang, 2023. "Time, Spatial and Component Characteristics of Agricultural Carbon Emissions of China," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    8. Jeremiás Máté Balogh, 2023. "The impacts of agricultural subsidies of Common Agricultural Policy on agricultural emissions: The case of the European Union," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(4), pages 140-150.
    9. Pătărlăgeanu Simona Roxana & Constantin Marius & Dinu Mihai & Petrescu Irina Elena & Deaconu Elena Mădălina, 2024. "Farm Carbon Footprint Measurement Frameworks Based on the Digitization and Environmental Sustainability Paradigm," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 1602-1612.
    10. Xiaoyan Sun & Shuya Guang & Jingjing Cao & Fengying Zhu & Jianxu Liu & Songsak Sriboonchitta, 2023. "Effect of Agricultural Production Trusteeship on Agricultural Carbon Emission Reduction," Agriculture, MDPI, vol. 13(7), pages 1-18, July.
    11. Shulong Li & Zhizhang Wang, 2023. "The Effects of Agricultural Technology Progress on Agricultural Carbon Emission and Carbon Sink in China," Agriculture, MDPI, vol. 13(4), pages 1-21, March.
    12. Monica Laura Zlati & Costinela Fortea & Valentin Marian Antohi, 2024. "The Economic Value of European Organic Farming in the Transition to Climate Neutrality," Journal of Agriculture and Rural Development Studies, "Dunarea de Jos" University of Galati, Doctoral Field Engineering and Management in Agriculture and Rural Development, issue 1, pages 63-75.
    13. Andrés Villarruel-Jaramillo & Josué F. Rosales-Pérez & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Modeling and Performance Evaluation of Hybrid Solar Cooling Systems Driven by Photovoltaic and Solar Thermal Collectors—Case Study: Greenhouses of Andalusia," Energies, MDPI, vol. 16(13), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Błażej Suproń & Janusz Myszczyszyn, 2024. "Impact of Renewable and Non-Renewable Energy Consumption on the Production of the Agricultural Sector in the European Union," Energies, MDPI, vol. 17(15), pages 1-22, July.
    2. Schleich, Joachim & Alsheimer, Sven, 2024. "The relationship between willingness to pay and carbon footprint knowledge: Are individuals willing to pay more to offset their carbon footprint if they learn about its size and distance to the 1.5 °C," Ecological Economics, Elsevier, vol. 219(C).
    3. Aryal, Jeetendra P., 2022. "Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific," ADBI Working Papers 1340, Asian Development Bank Institute.
    4. Io Carydi & Athanasios Koutsianas & Marios Desyllas, 2023. "People, Crops, and Bee Farming: Landscape Models for a Symbiotic Network in Greece," Land, MDPI, vol. 12(2), pages 1-25, February.
    5. Hornungová, Jana & Petrová, Kateřina, 2023. "The Relationship Between Digital Performance and Production of Greenhouse Gas Emissions in EU Countries: Correlation Analysis and ANOVA Method," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 15(01), January.
    6. Adrian Sadłowski & Wioletta Wrzaszcz & Katarzyna Smędzik-Ambroży & Anna Matras-Bolibok & Anna Budzyńska & Marek Angowski & Stefan Mann, 2021. "Direct Payments and Sustainable Agricultural Development—The Example of Poland," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    7. Max-Frederik Piepel & Hans-Werner Olfs, 2023. "Development of a Physicochemical Test Kit for On-Farm Measurement of Nutrients in Liquid Organic Manures," Agriculture, MDPI, vol. 13(2), pages 1-12, February.
    8. repec:ags:ijag24:344718 is not listed on IDEAS
    9. Hanna Kröhnert & Matthias Stucki, 2021. "Life Cycle Assessment of a Plant-Based, Regionally Marketed Shampoo and Analysis of Refill Options," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    10. Koen Deconinck & Marion Jansen & Carla Barisone, 2023. "Fast and furious: the rise of environmental impact reporting in food systems," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1310-1337.
    11. Kelly R. Wilson & Robert L. Myers & Mary K. Hendrickson & Emily A. Heaton, 2022. "Different Stakeholders’ Conceptualizations and Perspectives of Regenerative Agriculture Reveals More Consensus Than Discord," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    12. Marek Zieliński & Piotr Koza & Artur Łopatka, 2022. "Agriculture from Areas Facing Natural or Other Specific Constraints (ANCs) in Poland, Its Characteristics, Directions of Changes and Challenges in the Context of the European Green Deal," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    13. Komorowska, Dorota, 2024. "Organizacja i Efektywność Polskich Gospodarstw Ekologicznych w Porównaniu do Konwencjonalnych," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2024(2).
    14. Graczyk, Dariusz & Pińskwar, Iwona & Choryński, Adam & Stasik, Rafał, 2024. "Less power when more is needed. Climate-related current and possible future problems of the wind energy sector in Poland," Renewable Energy, Elsevier, vol. 232(C).
    15. Elena Feo & Sylvia Burssens & Hannes Mareen & Pieter Spanoghe, 2022. "Shedding Light into the Need of Knowledge Sharing in H2020 Thematic Networks for the Agriculture and Forestry Innovation," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    16. Yang, J.Y. & Drury, C.F. & Jiang, R. & Worth, D.E. & Bittman, S. & Grant, B.B. & Smith, W.N., 2024. "Reactive nitrogen losses from Canadian agricultural soils over 36 years," Ecological Modelling, Elsevier, vol. 495(C).
    17. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
    18. Marta Joanna Monder & Andrzej Pacholczak & Małgorzata Zajączkowska, 2024. "Directions in Ornamental Herbaceous Plant Selection in the Central European Temperate Zone in the Time of Climate Change: Benefits and Threats," Agriculture, MDPI, vol. 14(12), pages 1-33, December.
    19. Hinnerk Gnutzmann & Oskar Kowalewski & Piotr Śpiewanowski, 2020. "Market Structure and Resilience: Evidence from Potash Mine Disasters," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 911-933, May.
    20. Oleksandr Faichuk & Lesia Voliak & Taras Hutsol & Szymon Glowacki & Yuriy Pantsyr & Sergii Slobodian & Anna Szeląg-Sikora & Zofia Gródek-Szostak, 2022. "European Green Deal: Threats Assessment for Agri-Food Exporting Countries to the EU," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    21. Daniel J. Bloomer & Kerry C. Harrington & Hossein Ghanizadeh & Trevor K. James, 2024. "Pots to Plots: Microshock Weed Control Is an Effective and Energy Efficient Option in the Field," Sustainability, MDPI, vol. 16(11), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1383-:d:905970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.