IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i5p600-d801344.html
   My bibliography  Save this article

Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides

Author

Listed:
  • Patrick Maada Ngegba

    (Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
    Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
    Sierra Leone Agricultural Research Institute, P.M.B 1313 Tower Hill, Freetown 47235, Sierra Leone)

  • Gaofeng Cui

    (Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
    Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China)

  • Muhammad Zaryab Khalid

    (Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
    Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China)

  • Guohua Zhong

    (Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
    Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China)

Abstract

Pest management is being confronted with immense economic and environmental issues worldwide because of massive utilization and over-reliance on pesticides. The non-target toxicity, residual consequence, and challenging biodegradability of these synthetic pesticides have become a serious concern, which urgently requires the alternative and prompt adoption of sustainable and cost-effective pest control measures. Increasing attention in environmental safety has triggered interest in pest control approaches through eco-friendly plant-based pesticides. Botanical pesticidal constituents are effective against myriads of destructive pests and diseases. More importantly, they are widely available, inexpensive, accessible, rapidly biodegradable, and have little toxicity to beneficiary agents. The phytochemical compositions in diverse plant species are responsible for their varying mechanisms of action against pests and diseases. However, difficulties in their formulation and insufficient appropriate chemical data have led to a low level of acceptance and adoption globally. Therefore, the review seeks to highlight the status, phytochemical compositions, insecticidal mechanisms, and challenges of plant-based pesticide usage in sustainable agricultural production.

Suggested Citation

  • Patrick Maada Ngegba & Gaofeng Cui & Muhammad Zaryab Khalid & Guohua Zhong, 2022. "Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides," Agriculture, MDPI, vol. 12(5), pages 1-24, April.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:600-:d:801344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/5/600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/5/600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muthomi, James & Fulano, A. M. & Wagacha, J. M. & Mwang’ombe, A. W., 2017. "Management of Snap Bean Insect Pests and Diseases by Use of Antagonistic Fungi and Plant Extracts," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 6(3), August.
    2. Richard A. Dixon, 2001. "Natural products and plant disease resistance," Nature, Nature, vol. 411(6839), pages 843-847, June.
    3. Patricio Grassini & Kent M. Eskridge & Kenneth G. Cassman, 2013. "Distinguishing between yield advances and yield plateaus in historical crop production trends," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    4. Baidoo, P. K. & Mochiah, M. B., 2016. "Comparing the Effectiveness of Garlic (Allium sativum L.) and Hot Pepper (Capsicum frutescens L.) in the Management of the Major Pests of Cabbage Brassica oleracea (L.)," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(2).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marija Nazlić & Valerija Dunkić & Mia Dželalija & Ana Maravić & Mihaela Mandić & Siniša Srečec & Ivana Vrca & Elma Vuko & Dario Kremer, 2023. "Evaluation of Antiphytoviral and Antibacterial Activity of Essential Oil and Hydrosol Extracts from Five Veronica Species," Agriculture, MDPI, vol. 13(8), pages 1-13, July.
    2. Li Zhao & Changwei Wang & Haiying Gu & Chengyan Yue, 2023. "Do Chinese Farmers Misuse Pesticide Intentionally or Not?," Agriculture, MDPI, vol. 13(9), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    2. Natalia Brzezina & Birgit Kopainsky & Erik Mathijs, 2016. "Can Organic Farming Reduce Vulnerabilities and Enhance the Resilience of the European Food System? A Critical Assessment Using System Dynamics Structural Thinking Tools," Sustainability, MDPI, vol. 8(10), pages 1-32, September.
    3. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    4. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    5. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    6. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    7. Qing Li & Xueyan Zhang, 2022. "Identifying Peach Trees in Cultivated Land Using U-Net Algorithm," Land, MDPI, vol. 11(7), pages 1-15, July.
    8. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    9. Lawton Nalley & Francis Tsiboe & Alvaro Durand-Morat & Aaron Shew & Greg Thoma, 2016. "Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-15, December.
    10. Enrico Balugani & Beike Sumfleth & Stefan Majer & Diego Marazza & Daniela Thrän, 2022. "Bridging Modeling and Certification to Evaluate Low-ILUC-Risk Practices for Biobased Materials with a User-Friendly Tool," Sustainability, MDPI, vol. 14(4), pages 1-19, February.
    11. Samantha de Jesus Rivero-Montejo & Marcela Vargas-Hernandez & Irineo Torres-Pacheco, 2021. "Nanoparticles as Novel Elicitors to Improve Bioactive Compounds in Plants," Agriculture, MDPI, vol. 11(2), pages 1-16, February.
    12. Jindo, Keiji & Schut, Antonius G.T. & Langeveld, Johannes W.A., 2020. "Sustainable intensification in Western Kenya: Who will benefit?," Agricultural Systems, Elsevier, vol. 182(C).
    13. Hendricks, Nathan P. & Stigler, Matthieu M., 2020. "Global Yield Distributions since 1960," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304570, Agricultural and Applied Economics Association.
    14. Gao, Yukun & Zhao, Hongfang & Zhao, Chuang & Hu, Guohua & Zhang, Han & Liu, Xue & Li, Nan & Hou, Haiyan & Li, Xia, 2022. "Spatial and temporal variations of maize and wheat yield gaps and their relationships with climate in China," Agricultural Water Management, Elsevier, vol. 270(C).
    15. Shen Yuan & Bruce A. Linquist & Lloyd T. Wilson & Kenneth G. Cassman & Alexander M. Stuart & Valerien Pede & Berta Miro & Kazuki Saito & Nurwulan Agustiani & Vina Eka Aristya & Leonardus Y. Krisnadi &, 2021. "Sustainable intensification for a larger global rice bowl," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Matteo Coronese & Martina Occelli & Francesco Lamperti & Andrea Roventini, 2024. "Towards sustainable agriculture: behaviors, spatial dynamics and policy in an evolutionary agent-based model," LEM Papers Series 2024/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    17. Tomas Linder, 2019. "Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(2), pages 265-278, April.
    18. repec:ags:aaea22:335783 is not listed on IDEAS
    19. Fanta F. Jabbi & Yu’e Li & Tianyi Zhang & Wang Bin & Waseem Hassan & You Songcai, 2021. "Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    20. Dennis Wichelns, 2015. "Achieving Water and Food Security in 2050: Outlook, Policies, and Investments," Agriculture, MDPI, vol. 5(2), pages 1-33, April.
    21. José M. Paruelo & Miguel Sierra, 2023. "Sustainable intensification and ecosystem services: how to connect them in agricultural systems of southern South America," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(1), pages 198-206, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:5:p:600-:d:801344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.