IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v289y2023ics0378377423004225.html
   My bibliography  Save this article

Crop acreage planning for economy- resource- efficiency coordination: Grey information entropy based uncertain model

Author

Listed:
  • Wu, Hui
  • Li, Xiaojuan
  • Lu, Hongna
  • Tong, Ling
  • Kang, Shaozhong

Abstract

Reasonable adjustment of crop acreage can improve the sustainability of agriculture in arid zones by promoting economic development, alleviating water scarcity, and improving resource utilization efficiency but meets the challenges of various decision-maker preferences and uncertainties. With the objectives of maximizing economic benefits, minimizing evapotranspiration, and maximizing water productivity and water production efficiency, this study developed a grey entropy based multi-objective fuzzy constraint interval programming model (GEMOFCIP) through incorporation of information entropy technology, fuzzy constraints and interval programming approaches within a general optimization framework. The model is capable of (1) generating the crop acreage management schemes through trading off the different development goals; (2) dealing with the structure and parameter uncertainties of the optimization model; (3) measuring the relative importance of multiple objectives by the introduction of information entropy with the insufficient decision-maker’s preference information. Taking the crop acreage planning problem in Liangzhou, northwest China as a case study, the model was solved under different water-saving and satisfaction degree scenarios. It turned out that, after optimization, the economic benefit, water productivity and water production efficiency have been significantly improved, while the total ET and the total irrigation water have been significantly compressed in the study area. The GEMOFCIP model is superior to the previous models in that it takes into account the randomness of the relative importance of system objective, the vagueness of system constraints and the fluctuations of system coefficients, which would make the model more reasonable, stable and objective. Optimal results can help manage crop pattern with the economy-resource-efficiency consideration and accelerate the healthy development of agriculture in arid zones.

Suggested Citation

  • Wu, Hui & Li, Xiaojuan & Lu, Hongna & Tong, Ling & Kang, Shaozhong, 2023. "Crop acreage planning for economy- resource- efficiency coordination: Grey information entropy based uncertain model," Agricultural Water Management, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004225
    DOI: 10.1016/j.agwat.2023.108557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423004225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Chunyang He & Zhifeng Liu & Jianguo Wu & Xinhao Pan & Zihang Fang & Jingwei Li & Brett A. Bryan, 2021. "Future global urban water scarcity and potential solutions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Víctor M. Albornoz & Marcelo I. Véliz & Rodrigo Ortega & Virna Ortíz-Araya, 2020. "Integrated versus hierarchical approach for zone delineation and crop planning under uncertainty," Annals of Operations Research, Springer, vol. 286(1), pages 617-634, March.
    4. Patricio Grassini & Kent M. Eskridge & Kenneth G. Cassman, 2013. "Distinguishing between yield advances and yield plateaus in historical crop production trends," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    5. Jalota, S.K. & Singh, K.B. & Chahal, G.B.S. & Gupta, R.K. & Chakraborty, Somsubhra & Sood, Anil & Ray, S.S. & Panigrahy, S., 2009. "Integrated effect of transplanting date, cultivar and irrigation on yield, water saving and water productivity of rice (Oryza sativa L.) in Indian Punjab: Field and simulation study," Agricultural Water Management, Elsevier, vol. 96(7), pages 1096-1104, July.
    6. Zuo, Qiting & Wu, Qingsong & Yu, Lei & Li, Yongping & Fan, Yurui, 2021. "Optimization of uncertain agricultural management considering the framework of water, energy and food," Agricultural Water Management, Elsevier, vol. 253(C).
    7. Li, Zhao & Luo, Zujiang & Wang, Yan & Fan, Guanyu & Zhang, Jianmang, 2022. "Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method," Renewable Energy, Elsevier, vol. 184(C), pages 564-576.
    8. Zeng, Xieting & Kang, Shaozhong & Li, Fusheng & Zhang, Lu & Guo, Ping, 2010. "Fuzzy multi-objective linear programming applying to crop area planning," Agricultural Water Management, Elsevier, vol. 98(1), pages 134-142, December.
    9. Bwambale, Erion & Abagale, Felix K. & Anornu, Geophrey K., 2022. "Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Wei Xie & Anfeng Zhu & Tariq Ali & Zhengtao Zhang & Xiaoguang Chen & Feng Wu & Jikun Huang & Kyle Frankel Davis, 2023. "Crop switching can enhance environmental sustainability and farmer incomes in China," Nature, Nature, vol. 616(7956), pages 300-305, April.
    11. Yingjun Zhang & Yizhi Wang & Jingping Wang, 2014. "Objective Attributes Weights Determining Based on Shannon Information Entropy in Hesitant Fuzzy Multiple Attribute Decision Making," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-7, April.
    12. Nikouei, Alireza & Asgharipour, Mohammad Reza & Marzban, Zahra, 2022. "Modeling land allocation to produce crops under economic and environmental goals in Iran: a multi-objective programming approach," Ecological Modelling, Elsevier, vol. 471(C).
    13. Li, Mo & Cao, Xiaoxu & Liu, Dong & Fu, Qiang & Li, Tianxiao & Shang, Ruochen, 2022. "Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach," Agricultural Water Management, Elsevier, vol. 259(C).
    14. Liu, J. & Li, Y.P. & Huang, G.H. & Zeng, X.T., 2014. "A dual-interval fixed-mix stochastic programming method for water resources management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 88(C), pages 50-66.
    15. López-Mata, E. & Orengo-Valverde, J.J. & Tarjuelo, J.M. & Martínez-Romero, A. & Domínguez, A., 2016. "Development of a direct-solution algorithm for determining the optimal crop planning of farms using deficit irrigation," Agricultural Water Management, Elsevier, vol. 171(C), pages 173-187.
    16. Li, Xiaojuan & Kang, Shaozhong & Niu, Jun & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng, 2017. "Applying uncertain programming model to improve regional farming economic benefits and water productivity," Agricultural Water Management, Elsevier, vol. 179(C), pages 352-365.
    17. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    18. Ruan, Hongwei & Yu, Jingjie & Wang, Ping & Hao, Lingang & Wang, Zhenlong, 2023. "Relieving water stress by optimizing crop structure is a practicable approach in arid transboundary rivers of Central Asia," Agricultural Water Management, Elsevier, vol. 275(C).
    19. Zhang, Chenglong & Yang, Gaiqiang & Wang, Chaozi & Huo, Zailin, 2023. "Linking agricultural water-food-environment nexus with crop area planning: A fuzzy credibility-based multi-objective linear fractional programming approach," Agricultural Water Management, Elsevier, vol. 277(C).
    20. Yuxin Zhu & Dazuo Tian & Feng Yan, 2020. "Effectiveness of Entropy Weight Method in Decision-Making," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-5, March.
    21. Adeyemo, Josiah & Otieno, Fred, 2010. "Differential evolution algorithm for solving multi-objective crop planning model," Agricultural Water Management, Elsevier, vol. 97(6), pages 848-856, June.
    22. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    23. Itoh, Takeshi & Ishii, Hiroaki & Nanseki, Teruaki, 2003. "A model of crop planning under uncertainty in agricultural management," International Journal of Production Economics, Elsevier, vol. 81(1), pages 555-558, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaojuan & Kang, Shaozhong & Niu, Jun & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng, 2017. "Applying uncertain programming model to improve regional farming economic benefits and water productivity," Agricultural Water Management, Elsevier, vol. 179(C), pages 352-365.
    2. Víctor M. Albornoz & Marcelo I. Véliz & Rodrigo Ortega & Virna Ortíz-Araya, 2020. "Integrated versus hierarchical approach for zone delineation and crop planning under uncertainty," Annals of Operations Research, Springer, vol. 286(1), pages 617-634, March.
    3. Sun, Jiaxin & Yang, Yanli & Qi, Peng & Zhang, Guangxin & Wu, Yao, 2024. "Development and application of a new water-carbon-economy coupling model (WCECM) for optimal allocation of agricultural water and land resources," Agricultural Water Management, Elsevier, vol. 291(C).
    4. Víctor M. Albornoz & Gabriel E. Zamora, 2021. "Decomposition-based heuristic for the zoning and crop planning problem with adjacency constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 248-265, April.
    5. Zhang, Chenglong & Engel, Bernard A. & Guo, Ping, 2018. "An Interval-based Fuzzy Chance-constrained Irrigation Water Allocation model with double-sided fuzziness," Agricultural Water Management, Elsevier, vol. 210(C), pages 22-31.
    6. Mostafa Mardani Najafabadi & Niloofar Ashktorab, 2023. "Mathematical programming approaches for modeling a sustainable cropping pattern under uncertainty: a case study in Southern Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9731-9755, September.
    7. Zhou, Huiping & Chen, Jinliang & Wang, Feng & Li, Xiaojuan & Génard, Michel & Kang, Shaozhong, 2020. "An integrated irrigation strategy for water-saving and quality-improving of cash crops: Theory and practice in China," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Cervantes-Gaxiola, Maritza E. & Sosa-Niebla, Erik F. & Hernández-Calderón, Oscar M. & Ponce-Ortega, José M. & Ortiz-del-Castillo, Jesús R. & Rubio-Castro, Eusiel, 2020. "Optimal crop allocation including market trends and water availability," European Journal of Operational Research, Elsevier, vol. 285(2), pages 728-739.
    9. Babic, Zoran & Peric, Tunjo, 2011. "Optimization of livestock feed blend by use of goal programming," International Journal of Production Economics, Elsevier, vol. 130(2), pages 218-223, April.
    10. Wang, Yufeng & Kang, Shaozhong & Li, Fusheng & Zhang, Xiaotao, 2021. "Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Vijendra Kumar & S. M. Yadav, 2019. "Optimization of Cropping Patterns Using Elitist-Jaya and Elitist-TLBO Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1817-1833, March.
    12. Yue, Qiong & Guo, Ping & Wu, Hui & Wang, Youzhi & Zhang, Chenglong, 2022. "Towards sustainable circular agriculture: An integrated optimization framework for crop-livestock-biogas-crop recycling system management under uncertainty," Agricultural Systems, Elsevier, vol. 196(C).
    13. Mardani Najafabadi, Mostafa & Magazzino, Cosimo & Valente, Donatella & Mirzaei, Abbas & Petrosillo, Irene, 2023. "A new interval meta-goal programming for sustainable planning of agricultural water-land use nexus," Ecological Modelling, Elsevier, vol. 484(C).
    14. Zhang, Chenglong & Li, Xuemin & Guo, Ping & Huo, Zailin, 2020. "An improved interval-based fuzzy credibility-constrained programming approach for supporting optimal irrigation water management under uncertainty," Agricultural Water Management, Elsevier, vol. 238(C).
    15. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    16. Liu, Duan & Yu, Nizhou & Wan, Hong, 2022. "Does water rights trading affect corporate investment? The role of resource allocation and risk mitigation channels," Economic Modelling, Elsevier, vol. 117(C).
    17. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    19. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
    20. Zhang, Shulin & Su, Xiaoling & Singh, Vijay P & Ayantobo, Olusola Olaitan & Xie, Juan, 2018. "Logarithmic Mean Divisia Index (LMDI) decomposition analysis of changes in agricultural water use: a case study of the middle reaches of the Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 208(C), pages 422-430.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.