IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12480-d677241.html
   My bibliography  Save this article

Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia

Author

Listed:
  • Fanta F. Jabbi

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Yu’e Li

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Tianyi Zhang

    (Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China)

  • Wang Bin

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Waseem Hassan

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • You Songcai

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

Abstract

Variations in the climate constitute a significant threat to the productivity of food crops in the Gambia. A good understanding of the influence of climate variability on crop production is vital for climate resilience and improved food security. This study examined the trends, relationships, and the extent to which growing season temperatures and the SPEI (Standardized Precipitation and Evapotranspiration Index) impacted sorghum, millet, maize, and rice yields in three agro-ecological regions of the Gambia during 1990–2019. Mean temperatures and the SPEI exhibited increasing trends while observed yields showed a decline across all regions. The SPEI had a significant positive relationship with yields, and temperatures were negatively associated with yields. Though yield response to climate variability differs among regions, 20% to 62% of variations in the four crop yields were due to climate trends. The combined effect of the SPEI and temperatures decreased yields from 3.6 kg ha −1 year −1 to 29.4 kg ha −1 year −1 , with the most severe decline observed in rice and maize yields in the Sahelian zone. Although uncertainties might arise from not considering related extreme climate events, this study highlights how past climate trends affect cereal yields in the Gambia; thus, any unfavorable change in the local climate could have severe repercussions on the country’s food security. There is a need for concerted efforts to increase investments in adaptation strategies to lessen the effects of the climate for improved crop productivity.

Suggested Citation

  • Fanta F. Jabbi & Yu’e Li & Tianyi Zhang & Wang Bin & Waseem Hassan & You Songcai, 2021. "Impacts of Temperature Trends and SPEI on Yields of Major Cereal Crops in the Gambia," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12480-:d:677241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Naser Sediqi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Rawshan Ali & Shadan Abubaker & Xiaojun Wang & Kamal Ahmed & Shamsuddin Shahid & Md. Asaduzzaman & Sayed Mir Agha Manawi, 2019. "Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    2. Li, Xiang & Takahashi, Taro & Suzuki, Nobuhiro & Kaiser, Harry M., 2011. "The impact of climate change on maize yields in the United States and China," Agricultural Systems, Elsevier, vol. 104(4), pages 348-353, April.
    3. Edward Sanneh & Allen Hu & Chia-Wei Hsu & Momodou Njie, 2014. "Prioritization of climate change adaptation approaches in the Gambia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(8), pages 1163-1178, December.
    4. Sumaiya Jarin Ahammed & Rajab Homsi & Najeebullah Khan & Shamsuddin Shahid & Mohammed Sanusi Shiru & Morteza Mohsenipour & Kamal Ahmed & Nadeem Nawaz & Nor Eliza Alias & Ali Yuzir, 2020. "Assessment of changing pattern of crop water stress in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4619-4637, June.
    5. Loum, Alieu & Fogarassy, Csaba, 2015. "The effects of climate change on cereals yield of production and food security in Gambia," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 9(4), pages 1-10, December.
    6. Derbetini A. Vondou & Guy Merlin Guenang & Tchotchou Lucie Angennes Djiotang & Pierre Honore Kamsu-Tamo, 2021. "Trends and Interannual Variability of Extreme Rainfall Indices over Cameroon," Sustainability, MDPI, vol. 13(12), pages 1-12, June.
    7. Ejis, 2011. "Table of Contents," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 01, March.
    8. Julius Kotir, 2011. "Climate change and variability in Sub-Saharan Africa: a review of current and future trends and impacts on agriculture and food security," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 13(3), pages 587-605, June.
    9. Ejis, 2011. "Table of Contents," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 02, June.
    10. Dave Reay & Christopher Sabine & Pete Smith & Graham Hymus, 2007. "Spring-time for sinks," Nature, Nature, vol. 446(7137), pages 727-728, April.
    11. Neville Nicholls, 1997. "Increased Australian wheat yield due to recent climate trends," Nature, Nature, vol. 387(6632), pages 484-485, May.
    12. Kazi Ahmed & Guiling Wang & Miao Yu & Jawoo Koo & Liangzhi You, 2015. "Potential impact of climate change on cereal crop yield in West Africa," Climatic Change, Springer, vol. 133(2), pages 321-334, November.
    13. Patricio Grassini & Kent M. Eskridge & Kenneth G. Cassman, 2013. "Distinguishing between yield advances and yield plateaus in historical crop production trends," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong, Hanseok & Pittelkow, Cameron M. & Bhattarai, Rabin, 2019. "Simulated responses of tile-drained agricultural systems to recent changes in ambient atmospheric gradients," Agricultural Systems, Elsevier, vol. 168(C), pages 48-55.
    2. Drydakis, Nick, 2021. "Social Rejection, Family Acceptance, Economic Recession and Physical and Mental Health of Sexual Minorities," IZA Discussion Papers 14733, Institute of Labor Economics (IZA).
    3. Ma Jiliang Jiliang & Jean-Francois Maystadt, 2016. "Weather shocks, maize yields and adaptation in rural China," Working Papers 104825642, Lancaster University Management School, Economics Department.
    4. Rosario Scandurra, 2015. "An analysis of inequality of skills among adults with PIAAC 2012," Investigaciones de Economía de la Educación volume 10, in: Marta Rahona López & Jennifer Graves (ed.), Investigaciones de Economía de la Educación 10, edition 1, volume 10, chapter 0, pages 23-36, Asociación de Economía de la Educación.
    5. Marcel Ciprian Pop, 2011. "Book Review on Rural Tourism – Treaty by Puiu Nistoreanu and Marinela Gheres (coord.), C.H. Beck Publishing House, Bucharest, 2010," International Journal of Economic Practices and Theories, Academy of Economic Studies - Bucharest, Romania, vol. 1(1), pages 44-50, July.
    6. Xibo Wang & Mingtao Yao & Jiashuo Li & Kexue Zhang & He Zhu & Minsi Zheng, 2017. "China’s Rare Earths Production Forecasting and Sustainable Development Policy Implications," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    7. Jorge Calero & Rosario Ivano Scandurra, 2016. "Modelling adult skills in OECD countries," Working Papers 2016/17, Institut d'Economia de Barcelona (IEB).
    8. Muth, Mary K. & Karns, Shawn A. & Nielsen, Samara Joy & Buzby, Jean C. & Wells, Hodan Farah, 2011. "Consumer-Level Food Loss Estimates and Their Use in the ERS Loss- Adjusted Food Availability Data," Technical Bulletins 184307, United States Department of Agriculture, Economic Research Service.
    9. Tao Huang & Lei Chen & Yu-Dong Cai & Kuo-Chen Chou, 2011. "Classification and Analysis of Regulatory Pathways Using Graph Property, Biochemical and Physicochemical Property, and Functional Property," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    10. Lechan Yang & Zhihao Qin & Lili Tu, 2015. "Responses of rice yields in different rice-cropping systems to climate variables in the middle and lower reaches of the Yangtze River, China," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 951-963, October.
    11. Nathan Wangusi & Gregory Kiker & Rafael Muñoz-Carpena & Wesley Henson, 2013. "Improving watershed decisions using run-off and yield models at different simulation scales," Environment Systems and Decisions, Springer, vol. 33(3), pages 440-456, September.
    12. Jan Mutchler & Yao-Chi Shih & Jiyoung Lyu & Ellen Bruce & Alison Gottlieb, 2015. "The Elder Economic Security Standard Index™: A New Indicator for Evaluating Economic Security in Later Life," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 120(1), pages 97-116, January.
    13. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    14. Raissa Sorgho & Isabel Mank & Moubassira Kagoné & Aurélia Souares & Ina Danquah & Rainer Sauerborn, 2020. "“We Will Always Ask Ourselves the Question of How to Feed the Family”: Subsistence Farmers’ Perceptions on Adaptation to Climate Change in Burkina Faso," IJERPH, MDPI, vol. 17(19), pages 1-25, October.
    15. Philip Antwi-Agyei & Andrew J. Dougill & Lindsay C. Stringer, 2017. "Assessing Coherence between Sector Policies and Climate Compatible Development: Opportunities for Triple Wins," Sustainability, MDPI, vol. 9(11), pages 1-16, November.
    16. Jean-Marc Montaud, 2019. "Agricultural Drought Impacts on Crops Sector and Adaptation Options in Mali: a Macroeconomic Computable General Equilibrium Analysis," Working papers of CATT hal-02141050, HAL.
    17. Wenjin Hu & Xinli Pan & Fengfeng Li & Wubei Dong, 2018. "UPLC-QTOF-MS metabolomics analysis revealed the contributions of metabolites to the pathogenesis of Rhizoctonia solani strain AG-1-IA," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-17, February.
    18. Mukherjee, Manisha, 2022. "Climate change and migration: Reviewing the role of access to agricultural adaptation measures," MERIT Working Papers 2022-039, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    19. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    20. OUKO, Kevin Okoth & GWADA, Robert Ouko & ALWORAH, Getrude Okutoyi & ONGANGA, Zephaniah Mayaka & OCHIENG, Sharon Vera & OGOLA, John Robert Ouko, 2020. "Effects Of Covid-19 Pandemic On Food Security And Household Livelihoods In Kenya," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 23(2), October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12480-:d:677241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.