IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p2047-d987919.html
   My bibliography  Save this article

DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification

Author

Listed:
  • Yang Chen

    (College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)

  • Xiaoyulong Chen

    (College of Tobacco Science, Guizhou University, Guiyang 550025, China)

  • Jianwu Lin

    (College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)

  • Renyong Pan

    (College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)

  • Tengbao Cao

    (College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)

  • Jitong Cai

    (College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)

  • Dianzhi Yu

    (College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)

  • Tomislav Cernava

    (Institute of Environmental Biotechnology, Graz University of Technology, 8010 Graz, Austria)

  • Xin Zhang

    (College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China)

Abstract

The identification of corn leaf diseases in a real field environment faces several difficulties, such as complex background disturbances, variations and irregularities in the lesion areas, and large intra-class and small inter-class disparities. Traditional Convolutional Neural Network (CNN) models have a low recognition accuracy and a large number of parameters. In this study, a lightweight corn disease identification model called DFCANet (Double Fusion block with Coordinate Attention Network) is proposed. The DFCANet consists mainly of two components: The dual feature fusion with coordinate attention and the Down-Sampling (DS) modules. The DFCA block contains dual feature fusion and Coordinate Attention (CA) modules. In order to completely fuse the shallow and deep features, these features were fused twice. The CA module suppresses the background noise and focuses on the diseased area. In addition, the DS module is used for down-sampling. It reduces the loss of information by expanding the feature channel dimension and the Depthwise convolution. The results show that DFCANet has an average recognition accuracy of 98.47%. It is more efficient at identifying corn leaf diseases in real scene images, compared with VGG16 (96.63%), ResNet50 (93.27%), EffcientNet-B0 (97.24%), ConvNeXt-B (94.18%), DenseNet121 (95.71%), MobileNet-V2 (95.41%), MobileNetv3-Large (96.33%), and ShuffleNetV2-1.0× (94.80%) methods. Moreover, the model’s Params and Flops are 1.91M and 309.1M, respectively, which are lower than heavyweight network models and most lightweight network models. In general, this study provides a novel, lightweight, and efficient convolutional neural network model for corn disease identification.

Suggested Citation

  • Yang Chen & Xiaoyulong Chen & Jianwu Lin & Renyong Pan & Tengbao Cao & Jitong Cai & Dianzhi Yu & Tomislav Cernava & Xin Zhang, 2022. "DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification," Agriculture, MDPI, vol. 12(12), pages 1-22, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2047-:d:987919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/2047/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/2047/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weidong Zhu & Jun Sun & Simin Wang & Jifeng Shen & Kaifeng Yang & Xin Zhou, 2022. "Identifying Field Crop Diseases Using Transformer-Embedded Convolutional Neural Network," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
    2. Khalied Albarrak & Yonis Gulzar & Yasir Hamid & Abid Mehmood & Arjumand Bano Soomro, 2022. "A Deep Learning-Based Model for Date Fruit Classification," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    3. Jianwu Lin & Xiaoyulong Chen & Renyong Pan & Tengbao Cao & Jitong Cai & Yang Chen & Xishun Peng & Tomislav Cernava & Xin Zhang, 2022. "GrapeNet: A Lightweight Convolutional Neural Network Model for Identification of Grape Leaf Diseases," Agriculture, MDPI, vol. 12(6), pages 1-17, June.
    4. Shengyi Zhao & Yun Peng & Jizhan Liu & Shuo Wu, 2021. "Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention Module," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gniewko Niedbała & Sebastian Kujawa, 2023. "Digital Innovations in Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-10, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Zhang & Huiyi Gao & Li Wan, 2022. "Classification of Fine-Grained Crop Disease by Dilated Convolution and Improved Channel Attention Module," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    2. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    3. Yuan-Kai Tu & Chin-En Kuo & Shih-Lun Fang & Han-Wei Chen & Ming-Kun Chi & Min-Hwi Yao & Bo-Jein Kuo, 2022. "A 1D-SP-Net to Determine Early Drought Stress Status of Tomato ( Solanum lycopersicum ) with Imbalanced Vis/NIR Spectroscopy Data," Agriculture, MDPI, vol. 12(2), pages 1-17, February.
    4. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdulghafor & Ali A. Alwan & Yonis Gulzar, 2023. "Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    5. Younés Noutfia & Ewa Ropelewska, 2022. "Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ ( Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements," Agriculture, MDPI, vol. 13(1), pages 1-12, December.
    6. Piotr Boniecki & Agnieszka Sujak & Gniewko Niedbała & Hanna Piekarska-Boniecka & Agnieszka Wawrzyniak & Andrzej Przybylak, 2023. "Neural Modelling from the Perspective of Selected Statistical Methods on Examples of Agricultural Applications," Agriculture, MDPI, vol. 13(4), pages 1-19, March.
    7. Jiapeng Cui & Feng Tan, 2023. "Rice Plaque Detection and Identification Based on an Improved Convolutional Neural Network," Agriculture, MDPI, vol. 13(1), pages 1-15, January.
    8. Rodrigo Cupertino Bernardes & André De Medeiros & Laercio da Silva & Leo Cantoni & Gustavo Ferreira Martins & Thiago Mastrangelo & Arthur Novikov & Clíssia Barboza Mastrangelo, 2022. "Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
    9. Xinle Zhang & Jian Cui & Huanjun Liu & Yongqi Han & Hongfu Ai & Chang Dong & Jiaru Zhang & Yunxiang Chu, 2023. "Weed Identification in Soybean Seedling Stage Based on Optimized Faster R-CNN Algorithm," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    10. Haixia Sun & Shujuan Zhang & Rui Ren & Liyang Su, 2022. "Maturity Classification of “Hupingzao” Jujubes with an Imbalanced Dataset Based on Improved MobileNet V2," Agriculture, MDPI, vol. 12(9), pages 1-16, August.
    11. Shahnawaz Ayoub & Yonis Gulzar & Jaloliddin Rustamov & Abdoh Jabbari & Faheem Ahmad Reegu & Sherzod Turaev, 2023. "Adversarial Approaches to Tackle Imbalanced Data in Machine Learning," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    12. Poonam Dhiman & Amandeep Kaur & V. R. Balasaraswathi & Yonis Gulzar & Ali A. Alwan & Yasir Hamid, 2023. "Image Acquisition, Preprocessing and Classification of Citrus Fruit Diseases: A Systematic Literature Review," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    13. Bharathwaaj Sundararaman & Siddhant Jagdev & Narendra Khatri, 2023. "Transformative Role of Artificial Intelligence in Advancing Sustainable Tomato ( Solanum lycopersicum ) Disease Management for Global Food Security: A Comprehensive Review," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    14. Xia Hao & Man Zhang & Tianru Zhou & Xuchao Guo & Federico Tomasetto & Yuxin Tong & Minjuan Wang, 2021. "An Automatic Light Stress Grading Architecture Based on Feature Optimization and Convolutional Neural Network," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    15. Lu Lu & Wei Liu & Wenbo Yang & Manyu Zhao & Tinghao Jiang, 2022. "Lightweight Corn Seed Disease Identification Method Based on Improved ShuffleNetV2," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    16. Mahdieh Parsaeian & Mohammad Rahimi & Abbas Rohani & Shaneka S. Lawson, 2022. "Towards the Modeling and Prediction of the Yield of Oilseed Crops: A Multi-Machine Learning Approach," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    17. Jianwu Lin & Xiaoyulong Chen & Renyong Pan & Tengbao Cao & Jitong Cai & Yang Chen & Xishun Peng & Tomislav Cernava & Xin Zhang, 2022. "GrapeNet: A Lightweight Convolutional Neural Network Model for Identification of Grape Leaf Diseases," Agriculture, MDPI, vol. 12(6), pages 1-17, June.
    18. Sonam Aggarwal & Sheifali Gupta & Deepali Gupta & Yonis Gulzar & Sapna Juneja & Ali A. Alwan & Ali Nauman, 2023. "An Artificial Intelligence-Based Stacked Ensemble Approach for Prediction of Protein Subcellular Localization in Confocal Microscopy Images," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    19. Yonis Gulzar & Zeynep Ünal & Hakan Aktaş & Mohammad Shuaib Mir, 2023. "Harnessing the Power of Transfer Learning in Sunflower Disease Detection: A Comparative Study," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    20. J. Dhakshayani & B. Surendiran, 2023. "M2F-Net: A Deep Learning-Based Multimodal Classification with High-Throughput Phenotyping for Identification of Overabundance of Fertilizers," Agriculture, MDPI, vol. 13(6), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2047-:d:987919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.