IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12871-d1225207.html
   My bibliography  Save this article

Machine-Learning-Based Spectroscopic Technique for Non-Destructive Estimation of Shelf Life and Quality of Fresh Fruits Packaged under Modified Atmospheres

Author

Listed:
  • Maged Mohammed

    (Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia
    Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Menoufia University, Shebin El Koum 32514, Egypt)

  • Ramasamy Srinivasagan

    (Computer Engineering Department, College of Computer Sciences & Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

  • Ali Alzahrani

    (Computer Engineering Department, College of Computer Sciences & Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

  • Nashi K. Alqahtani

    (Date Palm Research Center of Excellence, King Faisal University, Al-Ahsa 31982, Saudi Arabia
    Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

Abstract

The safety and quality of fresh fruits deserve the greatest attention, and are a priority for producers and consumers alike. Modern technologies are crucial to accurately estimating and predicting fresh fruits’ quality and shelf life, to optimize supply chain management. Modified atmosphere packaging (MAP) is an essential method that maintains quality parameters and increases the shelf life of fresh fruits by reducing their ripening rates. This study aimed to develop a cost-effective, non-destructive technique using tiny machine learning (TinyML) and a multispectral sensor to predict/estimate the quality parameters and shelf life of packaged fresh dates under the natural atmosphere (Control), vacuum-sealed bags (VSBs), and MAP with different gas combinations: 20% CO 2 + N balance (MAP1), and 20% CO 2 + 10% O 2 + N balance (MAP2). The shelf life and quality parameters of the packaged fresh dates (pH, total soluble solids (TSSs), sugar content (SC), moisture content (MC), and tannin content (TC)) were evaluated under different storage temperatures and times. A multispectral sensor (AS7265x) was utilized to correlate the fruit quality parameters with spectrum analysis under the same storage conditions, to prepare the dataset to train the prediction models. The prediction models were trained in the Edge Impulse Platform, and deployed to an Arduino Nano 33 BLE sense microcontroller unit (MCU) for inference. The findings indicated that the vacuum and MAP1 efficiently increased the shelf life and maintained the quality parameters of the packaged fresh fruit to 43 ± 2.39 and 39 ± 3.34 days, respectively, at 5 °C. The optimal neural network consisted of the input layer with 20 nodes (the packaging type, storage temperature, and 18 channels of the spectral sensor data at 410 to 940 nm wavelengths), two hidden layers with 20 and 12 nodes, and an output layer with one node for the target quality parameter or shelf life. These optimal prediction models efficiently predicted the shelf life with R 2 = 0.951, pH with R 2 = 0.854, TSSs with R 2 = 0.893, SC with R 2 = 0.881, MC with R 2 = 0.941, and TC with R 2 = 0.909. The evaluation of the developed prediction models under each packaging condition indicated that these models serve as powerful tools for accurately predicting fruit quality parameters, and estimating the shelf life of fresh dates.

Suggested Citation

  • Maged Mohammed & Ramasamy Srinivasagan & Ali Alzahrani & Nashi K. Alqahtani, 2023. "Machine-Learning-Based Spectroscopic Technique for Non-Destructive Estimation of Shelf Life and Quality of Fresh Fruits Packaged under Modified Atmospheres," Sustainability, MDPI, vol. 15(17), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12871-:d:1225207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12871/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12871/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khalied Albarrak & Yonis Gulzar & Yasir Hamid & Abid Mehmood & Arjumand Bano Soomro, 2022. "A Deep Learning-Based Model for Date Fruit Classification," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    2. Chen, Assaf & Orlov-Levin, Valerie & Meron, Moshe, 2019. "Applying high-resolution visible-channel aerial imaging of crop canopy to precision irrigation management," Agricultural Water Management, Elsevier, vol. 216(C), pages 196-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aristeidis Karras & Anastasios Giannaros & Christos Karras & Leonidas Theodorakopoulos & Constantinos S. Mammassis & George A. Krimpas & Spyros Sioutas, 2024. "TinyML Algorithms for Big Data Management in Large-Scale IoT Systems," Future Internet, MDPI, vol. 16(2), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Chen & Xiaoyulong Chen & Jianwu Lin & Renyong Pan & Tengbao Cao & Jitong Cai & Dianzhi Yu & Tomislav Cernava & Xin Zhang, 2022. "DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification," Agriculture, MDPI, vol. 12(12), pages 1-22, November.
    2. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    3. Lu Lu & Wei Liu & Wenbo Yang & Manyu Zhao & Tinghao Jiang, 2022. "Lightweight Corn Seed Disease Identification Method Based on Improved ShuffleNetV2," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    4. Mahdieh Parsaeian & Mohammad Rahimi & Abbas Rohani & Shaneka S. Lawson, 2022. "Towards the Modeling and Prediction of the Yield of Oilseed Crops: A Multi-Machine Learning Approach," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    5. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdulghafor & Ali A. Alwan & Yonis Gulzar, 2023. "Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    6. Sonam Aggarwal & Sheifali Gupta & Deepali Gupta & Yonis Gulzar & Sapna Juneja & Ali A. Alwan & Ali Nauman, 2023. "An Artificial Intelligence-Based Stacked Ensemble Approach for Prediction of Protein Subcellular Localization in Confocal Microscopy Images," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    7. Wei, Jiaxing & Dong, Weichen & Liu, Shaomin & Song, Lisheng & Zhou, Ji & Xu, Ziwei & Wang, Ziwei & Xu, Tongren & He, Xinlei & Sun, Jingwei, 2023. "Mapping super high resolution evapotranspiration in oasis-desert areas using UAV multi-sensor data," Agricultural Water Management, Elsevier, vol. 287(C).
    8. Filgueiras, Roberto & Almeida, Thomé Simpliciano & Mantovani, Everardo Chartuni & Dias, Santos Henrique Brant & Fernandes-Filho, Elpídio Inácio & da Cunha, Fernando França & Venancio, Luan Peroni, 2020. "Soil water content and actual evapotranspiration predictions using regression algorithms and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Yonis Gulzar & Zeynep Ünal & Hakan Aktaş & Mohammad Shuaib Mir, 2023. "Harnessing the Power of Transfer Learning in Sunflower Disease Detection: A Comparative Study," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    10. Younés Noutfia & Ewa Ropelewska, 2022. "Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ ( Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements," Agriculture, MDPI, vol. 13(1), pages 1-12, December.
    11. Shanxin Zhang & Hao Feng & Shaoyu Han & Zhengkai Shi & Haoran Xu & Yang Liu & Haikuan Feng & Chengquan Zhou & Jibo Yue, 2022. "Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    12. Jiapeng Cui & Feng Tan, 2023. "Rice Plaque Detection and Identification Based on an Improved Convolutional Neural Network," Agriculture, MDPI, vol. 13(1), pages 1-15, January.
    13. Rodrigo Cupertino Bernardes & André De Medeiros & Laercio da Silva & Leo Cantoni & Gustavo Ferreira Martins & Thiago Mastrangelo & Arthur Novikov & Clíssia Barboza Mastrangelo, 2022. "Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
    14. Bogdan Kulig & Jacek Waga & Andrzej Oleksy & Marcin Rapacz & Marek Kołodziejczyk & Piotr Wężyk & Agnieszka Klimek-Kopyra & Robert Witkowicz & Andrzej Skoczowski & Grażyna Podolska & Wiesław Grygierzec, 2023. "Forecasting of Hypoallergenic Wheat Productivity Based on Unmanned Aerial Vehicles Remote Sensing Approach—Case Study," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    15. Xinle Zhang & Jian Cui & Huanjun Liu & Yongqi Han & Hongfu Ai & Chang Dong & Jiaru Zhang & Yunxiang Chu, 2023. "Weed Identification in Soybean Seedling Stage Based on Optimized Faster R-CNN Algorithm," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    16. Luis Vargas Tamayo & Christopher Thron & Jean Louis Kedieng Ebongue Fendji & Shauna-Kay Thomas & Anna Förster, 2020. "Cost-Minimizing System Design for Surveillance of Large, Inaccessible Agricultural Areas Using Drones of Limited Range," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    17. Haixia Sun & Shujuan Zhang & Rui Ren & Liyang Su, 2022. "Maturity Classification of “Hupingzao” Jujubes with an Imbalanced Dataset Based on Improved MobileNet V2," Agriculture, MDPI, vol. 12(9), pages 1-16, August.
    18. Yonis Gulzar, 2023. "Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    19. Shahnawaz Ayoub & Yonis Gulzar & Jaloliddin Rustamov & Abdoh Jabbari & Faheem Ahmad Reegu & Sherzod Turaev, 2023. "Adversarial Approaches to Tackle Imbalanced Data in Machine Learning," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    20. Poonam Dhiman & Amandeep Kaur & V. R. Balasaraswathi & Yonis Gulzar & Ali A. Alwan & Yasir Hamid, 2023. "Image Acquisition, Preprocessing and Classification of Citrus Fruit Diseases: A Systematic Literature Review," Sustainability, MDPI, vol. 15(12), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12871-:d:1225207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.