IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i8p1479-d1202887.html
   My bibliography  Save this article

Harnessing the Power of Transfer Learning in Sunflower Disease Detection: A Comparative Study

Author

Listed:
  • Yonis Gulzar

    (Department of Management Information Systems, College of Business Administration, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

  • Zeynep Ünal

    (Department of Biosystem Engineering, Niğde Ömer Halisdemir University, Central Campus, Niğde 51240, Türkiye)

  • Hakan Aktaş

    (Department of Computer Engineering, Niğde Ömer Halisdemir University, Central Campus, Niğde 51240, Türkiye)

  • Mohammad Shuaib Mir

    (Department of Management Information Systems, College of Business Administration, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

Abstract

Sunflower is an important crop that is susceptible to various diseases, which can significantly impact crop yield and quality. Early and accurate detection of these diseases is crucial for implementing appropriate management strategies. In recent years, deep learning techniques have shown promising results in the field of disease classification using image data. This study presents a comparative analysis of different deep-learning models for the classification of sunflower diseases. five widely used deep learning models, namely AlexNet, VGG16, InceptionV3, MobileNetV3, and EfficientNet were trained and evaluated using a dataset of sunflower disease images. The performance of each model was measured in terms of precision, recall, F1-score, and accuracy. The experimental results demonstrated that all the deep learning models achieved high precision, recall, F1-score, and accuracy values for sunflower disease classification. Among the models, EfficientNetB3 exhibited the highest precision, recall, F1-score, and accuracy of 0.979. whereas the other models, ALexNet, VGG16, InceptionV3 and MobileNetV3 achieved 0.865, 0.965, 0.954 and 0.969 accuracy respectively. Based on the comparative analysis, it can be concluded that deep learning models are effective for the classification of sunflower diseases. The results highlight the potential of deep learning in early disease detection and classification, which can assist farmers and agronomists in implementing timely disease management strategies. Furthermore, the findings suggest that models like MobileNetV3 and EfficientNetB3 could be preferred choices due to their high performance and relatively fewer training epochs.

Suggested Citation

  • Yonis Gulzar & Zeynep Ünal & Hakan Aktaş & Mohammad Shuaib Mir, 2023. "Harnessing the Power of Transfer Learning in Sunflower Disease Detection: A Comparative Study," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1479-:d:1202887
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/8/1479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/8/1479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khalied Albarrak & Yonis Gulzar & Yasir Hamid & Abid Mehmood & Arjumand Bano Soomro, 2022. "A Deep Learning-Based Model for Date Fruit Classification," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    2. Rodica Gabriela Dawod & Ciprian Dobre, 2022. "Automatic Segmentation and Classification System for Foliar Diseases in Sunflower," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    3. Sonam Aggarwal & Sheifali Gupta & Deepali Gupta & Yonis Gulzar & Sapna Juneja & Ali A. Alwan & Ali Nauman, 2023. "An Artificial Intelligence-Based Stacked Ensemble Approach for Prediction of Protein Subcellular Localization in Confocal Microscopy Images," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    4. Promila Ghosh & Amit Kumar Mondal & Sajib Chatterjee & Mehedi Masud & Hossam Meshref & Anupam Kumar Bairagi, 2023. "Recognition of Sunflower Diseases Using Hybrid Deep Learning and Its Explainability with AI," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edmond Maican & Adrian Iosif & Sanda Maican, 2023. "Precision Corn Pest Detection: Two-Step Transfer Learning for Beetles (Coleoptera) with MobileNet-SSD," Agriculture, MDPI, vol. 13(12), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahnawaz Ayoub & Yonis Gulzar & Jaloliddin Rustamov & Abdoh Jabbari & Faheem Ahmad Reegu & Sherzod Turaev, 2023. "Adversarial Approaches to Tackle Imbalanced Data in Machine Learning," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    2. Poonam Dhiman & Amandeep Kaur & V. R. Balasaraswathi & Yonis Gulzar & Ali A. Alwan & Yasir Hamid, 2023. "Image Acquisition, Preprocessing and Classification of Citrus Fruit Diseases: A Systematic Literature Review," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    3. Yang Chen & Xiaoyulong Chen & Jianwu Lin & Renyong Pan & Tengbao Cao & Jitong Cai & Dianzhi Yu & Tomislav Cernava & Xin Zhang, 2022. "DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification," Agriculture, MDPI, vol. 12(12), pages 1-22, November.
    4. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    5. Lu Lu & Wei Liu & Wenbo Yang & Manyu Zhao & Tinghao Jiang, 2022. "Lightweight Corn Seed Disease Identification Method Based on Improved ShuffleNetV2," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
    6. Mahdieh Parsaeian & Mohammad Rahimi & Abbas Rohani & Shaneka S. Lawson, 2022. "Towards the Modeling and Prediction of the Yield of Oilseed Crops: A Multi-Machine Learning Approach," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    7. Xinyu Jia & Xueqin Jiang & Zhiyong Li & Jiong Mu & Yuchao Wang & Yupeng Niu, 2023. "Application of Deep Learning in Image Recognition of Citrus Pests," Agriculture, MDPI, vol. 13(5), pages 1-19, May.
    8. Bashar Igried & Shadi AlZu’bi & Darah Aqel & Ala Mughaid & Iyad Ghaith & Laith Abualigah, 2023. "An Intelligent and Precise Agriculture Model in Sustainable Cities Based on Visualized Symptoms," Agriculture, MDPI, vol. 13(4), pages 1-20, April.
    9. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdulghafor & Ali A. Alwan & Yonis Gulzar, 2023. "Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    10. Sonam Aggarwal & Sheifali Gupta & Deepali Gupta & Yonis Gulzar & Sapna Juneja & Ali A. Alwan & Ali Nauman, 2023. "An Artificial Intelligence-Based Stacked Ensemble Approach for Prediction of Protein Subcellular Localization in Confocal Microscopy Images," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    11. Yane Li & Ying Wang & Dayu Xu & Jiaojiao Zhang & Jun Wen, 2023. "An Improved Mask RCNN Model for Segmentation of ‘Kyoho’ ( Vitis labruscana ) Grape Bunch and Detection of Its Maturity Level," Agriculture, MDPI, vol. 13(4), pages 1-18, April.
    12. Yanlei Xu & Zhiyuan Gao & Yuting Zhai & Qi Wang & Zongmei Gao & Zhao Xu & Yang Zhou, 2023. "A CNNA-Based Lightweight Multi-Scale Tomato Pest and Disease Classification Method," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    13. Yanxin Hu & Gang Liu & Zhiyu Chen & Jiaqi Liu & Jianwei Guo, 2023. "Lightweight One-Stage Maize Leaf Disease Detection Model with Knowledge Distillation," Agriculture, MDPI, vol. 13(9), pages 1-22, August.
    14. Younés Noutfia & Ewa Ropelewska, 2022. "Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ ( Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements," Agriculture, MDPI, vol. 13(1), pages 1-12, December.
    15. Shanxin Zhang & Hao Feng & Shaoyu Han & Zhengkai Shi & Haoran Xu & Yang Liu & Haikuan Feng & Chengquan Zhou & Jibo Yue, 2022. "Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    16. Jiapeng Cui & Feng Tan, 2023. "Rice Plaque Detection and Identification Based on an Improved Convolutional Neural Network," Agriculture, MDPI, vol. 13(1), pages 1-15, January.
    17. Rodrigo Cupertino Bernardes & André De Medeiros & Laercio da Silva & Leo Cantoni & Gustavo Ferreira Martins & Thiago Mastrangelo & Arthur Novikov & Clíssia Barboza Mastrangelo, 2022. "Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
    18. Ewa Ropelewska & Dorota E. Kruczyńska & Ahmed M. Rady & Krzysztof P. Rutkowski & Dorota Konopacka & Karolina Celejewska & Monika Mieszczakowska-Frąc, 2023. "Evaluating the Classification of Freeze-Dried Slices and Cubes of Red-Fleshed Apple Genotypes Using Image Textures, Color Parameters, and Machine Learning," Agriculture, MDPI, vol. 13(3), pages 1-16, February.
    19. Maged Mohammed & Ramasamy Srinivasagan & Ali Alzahrani & Nashi K. Alqahtani, 2023. "Machine-Learning-Based Spectroscopic Technique for Non-Destructive Estimation of Shelf Life and Quality of Fresh Fruits Packaged under Modified Atmospheres," Sustainability, MDPI, vol. 15(17), pages 1-24, August.
    20. Xinle Zhang & Jian Cui & Huanjun Liu & Yongqi Han & Hongfu Ai & Chang Dong & Jiaru Zhang & Yunxiang Chu, 2023. "Weed Identification in Soybean Seedling Stage Based on Optimized Faster R-CNN Algorithm," Agriculture, MDPI, vol. 13(1), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1479-:d:1202887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.