IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i4p762-d1107422.html
   My bibliography  Save this article

Neural Modelling from the Perspective of Selected Statistical Methods on Examples of Agricultural Applications

Author

Listed:
  • Piotr Boniecki

    (Department of Biosystems Engineering, Poznań University of Life Sciences, 50 Wojska Polskiego Str., 60-637 Poznań, Poland)

  • Agnieszka Sujak

    (Department of Biosystems Engineering, Poznań University of Life Sciences, 50 Wojska Polskiego Str., 60-637 Poznań, Poland)

  • Gniewko Niedbała

    (Department of Biosystems Engineering, Poznań University of Life Sciences, 50 Wojska Polskiego Str., 60-637 Poznań, Poland)

  • Hanna Piekarska-Boniecka

    (Department of Entomology and Environmental Protection, Poznań University of Life Sciences, 159 Dąbrowskiego Str., 60-594 Poznań, Poland)

  • Agnieszka Wawrzyniak

    (Department of Biosystems Engineering, Poznań University of Life Sciences, 50 Wojska Polskiego Str., 60-637 Poznań, Poland)

  • Andrzej Przybylak

    (Department of Biosystems Engineering, Poznań University of Life Sciences, 50 Wojska Polskiego Str., 60-637 Poznań, Poland)

Abstract

Modelling plays an important role in identifying and solving problems that arise in a number of scientific issues including agriculture. Research in the natural environment is often costly, labour demanding, and, in some cases, impossible to carry out. Hence, there is a need to create and use specific “substitutes” for originals, known in a broad sense as models. Owing to the dynamic development of computer techniques, simulation models, in the form of information technology (IT) systems that support cognitive processes (of various types), are acquiring significant importance. Models primarily serve to provide a better understanding of studied empirical systems, and for efficient design of new systems as well as their rapid (and also inexpensive) improvement. Empirical mathematical models that are based on artificial neural networks and mathematical statistical methods have many similarities. In practice, scientific methodologies all use different terminology, which is mainly due to historical factors. Unfortunately, this distorts an overview of their mutual correlations, and therefore, fundamentally hinders an adequate comparative analysis of the methods. Using neural modelling terminology, statisticians are primarily concerned with the process of generalisation that involves analysing previously acquired noisy empirical data. Indeed, the objects of analyses, whether statistical or neural, are generally the results of experiments that, by their nature, are subject to various types of errors, including measurement errors. In this overview, we identify and highlight areas of correlation and interfacing between several selected neural network models and relevant, commonly used statistical methods that are frequently applied in agriculture. Examples are provided on the assessment of the quality of plant and animal production, pest risks, and the quality of agricultural environments.

Suggested Citation

  • Piotr Boniecki & Agnieszka Sujak & Gniewko Niedbała & Hanna Piekarska-Boniecka & Agnieszka Wawrzyniak & Andrzej Przybylak, 2023. "Neural Modelling from the Perspective of Selected Statistical Methods on Examples of Agricultural Applications," Agriculture, MDPI, vol. 13(4), pages 1-19, March.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:762-:d:1107422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/4/762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/4/762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weidong Zhu & Jun Sun & Simin Wang & Jifeng Shen & Kaifeng Yang & Xin Zhou, 2022. "Identifying Field Crop Diseases Using Transformer-Embedded Convolutional Neural Network," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
    2. Sebastian Kujawa & Gniewko Niedbała, 2021. "Artificial Neural Networks in Agriculture," Agriculture, MDPI, vol. 11(6), pages 1-6, May.
    3. Mohsen Sabzi-Nojadeh & Gniewko Niedbała & Mehdi Younessi-Hamzekhanlu & Saeid Aharizad & Mohammad Esmaeilpour & Moslem Abdipour & Sebastian Kujawa & Mohsen Niazian, 2021. "Modeling the Essential Oil and Trans -Anethole Yield of Fennel ( Foeniculum vulgare Mill. var. vulgare ) by Application Artificial Neural Network and Multiple Linear Regression Methods," Agriculture, MDPI, vol. 11(12), pages 1-17, November.
    4. Józef Gorzelany & Justyna Belcar & Piotr Kuźniar & Gniewko Niedbała & Katarzyna Pentoś, 2022. "Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning," Agriculture, MDPI, vol. 12(2), pages 1-13, January.
    5. Lachaud, Michée A. & Bravo-Ureta, Boris E., 2022. "A Bayesian statistical analysis of return to agricultural R&D investment in Latin America: Implications for food security," Technology in Society, Elsevier, vol. 70(C).
    6. Theodoros Petrakis & Angeliki Kavga & Vasileios Thomopoulos & Athanassios A. Argiriou, 2022. "Neural Network Model for Greenhouse Microclimate Predictions," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
    7. Krevh, Vedran & Filipović, Lana & Petošić, Dragutin & Mustać, Ivan & Bogunović, Igor & Butorac, Jasminka & Kisić, Ivica & Defterdarović, Jasmina & Nakić, Zoran & Kovač, Zoran & Pereira, Paulo & He, Ha, 2023. "Long-term analysis of soil water regime and nitrate dynamics at agricultural experimental site: Field-scale monitoring and numerical modeling using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Wawrzyniak & Andrzej Przybylak & Piotr Boniecki & Agnieszka Sujak & Maciej Zaborowicz, 2023. "Neural Modelling in the Study of the Relationship between Herd Structure, Amount of Manure and Slurry Produced, and Location of Herds in Poland," Agriculture, MDPI, vol. 13(7), pages 1-13, July.
    2. Gniewko Niedbała & Sebastian Kujawa, 2023. "Digital Innovations in Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-10, August.
    3. Jarosław Kurek & Gniewko Niedbała & Tomasz Wojciechowski & Bartosz Świderski & Izabella Antoniuk & Magdalena Piekutowska & Michał Kruk & Krzysztof Bobran, 2023. "Prediction of Potato ( Solanum tuberosum L.) Yield Based on Machine Learning Methods," Agriculture, MDPI, vol. 13(12), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gniewko Niedbała & Jarosław Kurek & Bartosz Świderski & Tomasz Wojciechowski & Izabella Antoniuk & Krzysztof Bobran, 2022. "Prediction of Blueberry ( Vaccinium corymbosum L.) Yield Based on Artificial Intelligence Methods," Agriculture, MDPI, vol. 12(12), pages 1-27, December.
    2. Yang Chen & Xiaoyulong Chen & Jianwu Lin & Renyong Pan & Tengbao Cao & Jitong Cai & Dianzhi Yu & Tomislav Cernava & Xin Zhang, 2022. "DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification," Agriculture, MDPI, vol. 12(12), pages 1-22, November.
    3. Marek Gaworski & Piotr F. Borowski & Łukasz Kozioł, 2022. "Supporting Decision-Making in the Technical Equipment Selection Process by the Method of Contradictory Evaluations," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    4. Oladayo S. Ajani & Member Joy Usigbe & Esther Aboyeji & Daniel Dooyum Uyeh & Yushin Ha & Tusan Park & Rammohan Mallipeddi, 2023. "Greenhouse Micro-Climate Prediction Based on Fixed Sensor Placements: A Machine Learning Approach," Mathematics, MDPI, vol. 11(14), pages 1-14, July.
    5. Shirin Ghatrehsamani & Gaurav Jha & Writuparna Dutta & Faezeh Molaei & Farshina Nazrul & Mathieu Fortin & Sangeeta Bansal & Udit Debangshi & Jasmine Neupane, 2023. "Artificial Intelligence Tools and Techniques to Combat Herbicide Resistant Weeds—A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    6. Gniewko Niedbała & Danuta Kurasiak-Popowska & Magdalena Piekutowska & Tomasz Wojciechowski & Michał Kwiatek & Jerzy Nawracała, 2022. "Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean ( Glycine max [L.] Merrill) Cultivar Augusta," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
    7. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2022. "Prediction of Protein Content in Pea ( Pisum sativum L.) Seeds Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    8. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2023. "Prediction of Pea ( Pisum sativum L.) Seeds Yield Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    9. Campos, Jean C. & Manrique-Silupú, José & Dorneanu, Bogdan & Ipanaqué, William & Arellano-García, Harvey, 2022. "A smart decision framework for the prediction of thrips incidence in organic banana crops," Ecological Modelling, Elsevier, vol. 473(C).
    10. Bonfiglio, A. & Camaioni, B. & Carta, V. & Cristiano, S., 2023. "Estimating the common agricultural policy milestones and targets by neural networks," Evaluation and Program Planning, Elsevier, vol. 99(C).
    11. Dominika Sieracka & Maciej Zaborowicz & Jakub Frankowski, 2023. "Identification of Characteristic Parameters in Seed Yielding of Selected Varieties of Industrial Hemp ( Cannabis sativa L.) Using Artificial Intelligence Methods," Agriculture, MDPI, vol. 13(5), pages 1-11, May.
    12. Awe, Olushina Olawale & Dias, Ronaldo, 2022. "Comparative Analysis of ARIMA and Artificial Neural Network Techniques for Forecasting Non-Stationary Agricultural Output Time Series," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 14(4), December.
    13. Gniewko Niedbała & Sebastian Kujawa, 2023. "Digital Innovations in Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-10, August.
    14. Sebastian C. Ibañez & Christopher P. Monterola, 2023. "A Global Forecasting Approach to Large-Scale Crop Production Prediction with Time Series Transformers," Agriculture, MDPI, vol. 13(9), pages 1-27, September.
    15. Chun-Ming Xu & Jia-Shuai Zhang & Ling-Qiang Kong & Xue-Bo Jin & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su & Hui-Jun Ma & Prasun Chakrabarti, 2022. "Prediction Model of Wastewater Pollutant Indicators Based on Combined Normalized Codec," Mathematics, MDPI, vol. 10(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:762-:d:1107422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.