IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i11p1126-d676449.html
   My bibliography  Save this article

An Automatic Light Stress Grading Architecture Based on Feature Optimization and Convolutional Neural Network

Author

Listed:
  • Xia Hao

    (College of Information Science and Engineering, Shandong Agricultural University, Tai’an 271000, China
    Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China)

  • Man Zhang

    (Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China)

  • Tianru Zhou

    (College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China)

  • Xuchao Guo

    (College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China)

  • Federico Tomasetto

    (AgResearch Limited, Christchurch 8140, New Zealand)

  • Yuxin Tong

    (Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100089, China)

  • Minjuan Wang

    (Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China)

Abstract

The identification of light stress is crucial for light control in plant factories. Image-based lighting classification of leafy vegetables has exhibited remarkable performance with high convenience and economy. Convolutional Neural Network (CNN) has been widely used for crop image analysis because of its architecture, high accuracy and efficiency. Among them, large intra-class differences and small inter-class differences are important factors affecting crop identification and a critical challenge for fine-grained classification tasks based on CNN. To address this problem, we took the Lettuce ( Lactuca sativa L.) widely grown in plant factories as the research object and constructed a leaf image set containing four stress levels. Then a light stress grading model combined with classic pre-trained CNN and Triplet loss function is constructed, which is named Tr-CNN. The model uses the Triplet loss function to constrain the distance of images in the feature space, which can reduce the Euclidean distance of the samples from the same class and increase the heterogeneous Euclidean distance. Multiple sets of experimental results indicate that the model proposed in this paper (Tr-CNN) has obvious advantages in light stress grading dataset and generalized dataset.

Suggested Citation

  • Xia Hao & Man Zhang & Tianru Zhou & Xuchao Guo & Federico Tomasetto & Yuxin Tong & Minjuan Wang, 2021. "An Automatic Light Stress Grading Architecture Based on Feature Optimization and Convolutional Neural Network," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1126-:d:676449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/11/1126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/11/1126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shengyi Zhao & Yun Peng & Jizhan Liu & Shuo Wu, 2021. "Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention Module," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
    2. Jinzhu Lu & Lijuan Tan & Huanyu Jiang, 2021. "Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification," Agriculture, MDPI, vol. 11(8), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Zhang & Huiyi Gao & Li Wan, 2022. "Classification of Fine-Grained Crop Disease by Dilated Convolution and Improved Channel Attention Module," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    2. Li Zhang & Qun Hao & Jie Cao, 2023. "Attention-Based Fine-Grained Lightweight Architecture for Fuji Apple Maturity Classification in an Open-World Orchard Environment," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
    3. Yang Chen & Xiaoyulong Chen & Jianwu Lin & Renyong Pan & Tengbao Cao & Jitong Cai & Dianzhi Yu & Tomislav Cernava & Xin Zhang, 2022. "DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification," Agriculture, MDPI, vol. 12(12), pages 1-22, November.
    4. Mingfeng Huang & Guoqin Xu & Junyu Li & Jianping Huang, 2021. "A Method for Segmenting Disease Lesions of Maize Leaves in Real Time Using Attention YOLACT++," Agriculture, MDPI, vol. 11(12), pages 1-14, December.
    5. Fahman Saeed & Muhammad Hussain & Hatim A. Aboalsamh, 2022. "Automatic Fingerprint Classification Using Deep Learning Technology (DeepFKTNet)," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
    6. Hieu T. T. L. Pham & Mahdi Rafieizonooz & SangUk Han & Dong-Eun Lee, 2021. "Current Status and Future Directions of Deep Learning Applications for Safety Management in Construction," Sustainability, MDPI, vol. 13(24), pages 1-37, December.
    7. Sen Lin & Yucheng Xiu & Jianlei Kong & Chengcai Yang & Chunjiang Zhao, 2023. "An Effective Pyramid Neural Network Based on Graph-Related Attentions Structure for Fine-Grained Disease and Pest Identification in Intelligent Agriculture," Agriculture, MDPI, vol. 13(3), pages 1-20, February.
    8. Jianwu Lin & Xiaoyulong Chen & Renyong Pan & Tengbao Cao & Jitong Cai & Yang Chen & Xishun Peng & Tomislav Cernava & Xin Zhang, 2022. "GrapeNet: A Lightweight Convolutional Neural Network Model for Identification of Grape Leaf Diseases," Agriculture, MDPI, vol. 12(6), pages 1-17, June.
    9. Yuan-Kai Tu & Chin-En Kuo & Shih-Lun Fang & Han-Wei Chen & Ming-Kun Chi & Min-Hwi Yao & Bo-Jein Kuo, 2022. "A 1D-SP-Net to Determine Early Drought Stress Status of Tomato ( Solanum lycopersicum ) with Imbalanced Vis/NIR Spectroscopy Data," Agriculture, MDPI, vol. 12(2), pages 1-17, February.
    10. Jinzhu Lu & Kaiqian Peng & Qi Wang & Cong Sun, 2023. "Lettuce Plant Trace-Element-Deficiency Symptom Identification via Machine Vision Methods," Agriculture, MDPI, vol. 13(8), pages 1-27, August.
    11. J. Dhakshayani & B. Surendiran, 2023. "M2F-Net: A Deep Learning-Based Multimodal Classification with High-Throughput Phenotyping for Identification of Overabundance of Fertilizers," Agriculture, MDPI, vol. 13(6), pages 1-19, June.
    12. Mosleh Hmoud Al-Adhaileh & Amit Verma & Theyazn H. H. Aldhyani & Deepika Koundal, 2023. "Potato Blight Detection Using Fine-Tuned CNN Architecture," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    13. Zahid Ullah & Najah Alsubaie & Mona Jamjoom & Samah H. Alajmani & Farrukh Saleem, 2023. "EffiMob-Net: A Deep Learning-Based Hybrid Model for Detection and Identification of Tomato Diseases Using Leaf Images," Agriculture, MDPI, vol. 13(3), pages 1-13, March.
    14. Bulent Tugrul & Elhoucine Elfatimi & Recep Eryigit, 2022. "Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    15. Hamed Alghamdi & Turki Turki, 2023. "PDD-Net: Plant Disease Diagnoses Using Multilevel and Multiscale Convolutional Neural Network Features," Agriculture, MDPI, vol. 13(5), pages 1-19, May.
    16. Bharathwaaj Sundararaman & Siddhant Jagdev & Narendra Khatri, 2023. "Transformative Role of Artificial Intelligence in Advancing Sustainable Tomato ( Solanum lycopersicum ) Disease Management for Global Food Security: A Comprehensive Review," Sustainability, MDPI, vol. 15(15), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:11:p:1126-:d:676449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.