IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p228-d1038353.html
   My bibliography  Save this article

Attention-Based Fine-Grained Lightweight Architecture for Fuji Apple Maturity Classification in an Open-World Orchard Environment

Author

Listed:
  • Li Zhang

    (Key Laboratory of Biomimetic Robots and Systems, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China)

  • Qun Hao

    (Key Laboratory of Biomimetic Robots and Systems, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
    Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314003, China
    School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130013, China)

  • Jie Cao

    (Key Laboratory of Biomimetic Robots and Systems, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
    Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314003, China)

Abstract

Fuji apples are one of the most important and popular economic crops worldwide in the fruit industry. Nowadays, there is a huge imbalance between the urgent demand of precise automated sorting models of fruit ripeness grades due to the increasing consumption levels and the limitations of most existing methods. In this regard, this paper presents a novel CNN-based fine-grained lightweight architecture for the task of Fuji apple maturity classification (FGAL-MC). Our proposed FGAL-MC architecture has three advantages compared with related previous research works. Firstly, we established a novel Fuji apple maturity dataset. We investigated the Fuji apple’s different growth stages using image samples that were captured in open-world orchard environments, which have the benefit of being able to guide the related methods to be more suitable for the practical working environment. Secondly, because maturity grades are difficult to discriminate due to the issues of subtle expression differences, as well as the various challenging disadvantages for the unstructured surroundings, we designed our network as a fine-grained classification architecture by introducing an attention mechanism to learn class-specific regions and discrimination. Thirdly, because the number of parameters of an architecture determines the time-cost and hardware configuration to some extent, we designed our proposed architecture as a lightweight structure, which is able to be applied or promoted for actual agriculture field operations. Finally, comprehensive qualitative and quantitative experiments demonstrated that our presented method can achieve competitive results in terms of accuracy, precision, recall, F1-score, and time-cost. In addition, extensive experiments indicated our proposed method also has outstanding performance in terms of generalization ability.

Suggested Citation

  • Li Zhang & Qun Hao & Jie Cao, 2023. "Attention-Based Fine-Grained Lightweight Architecture for Fuji Apple Maturity Classification in an Open-World Orchard Environment," Agriculture, MDPI, vol. 13(2), pages 1-20, January.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:228-:d:1038353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/228/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/228/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinzhu Lu & Lijuan Tan & Huanyu Jiang, 2021. "Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification," Agriculture, MDPI, vol. 11(8), pages 1-18, July.
    2. Shengyi Zhao & Yun Peng & Jizhan Liu & Shuo Wu, 2021. "Tomato Leaf Disease Diagnosis Based on Improved Convolution Neural Network by Attention Module," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
    3. Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Correction: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 408(6815), pages 1012-1012, December.
    4. Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 405(6789), pages 947-951, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia Hao & Man Zhang & Tianru Zhou & Xuchao Guo & Federico Tomasetto & Yuxin Tong & Minjuan Wang, 2021. "An Automatic Light Stress Grading Architecture Based on Feature Optimization and Convolutional Neural Network," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    2. Ahmed A Metwally & Philip S Yu & Derek Reiman & Yang Dai & Patricia W Finn & David L Perkins, 2019. "Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-16, February.
    3. Kim, Seongsu & Kim, Junghwan, 2023. "Assessing fuel economy and NOx emissions of a hydrogen engine bus using neural network algorithms for urban mass transit systems," Energy, Elsevier, vol. 275(C).
    4. Zhang, Wen & Yan, Shaoshan & Li, Jian & Tian, Xin & Yoshida, Taketoshi, 2022. "Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    5. Maoz Shamir, 2009. "The Temporal Winner-Take-All Readout," PLOS Computational Biology, Public Library of Science, vol. 5(2), pages 1-13, February.
    6. Oostwal, Elisa & Straat, Michiel & Biehl, Michael, 2021. "Hidden unit specialization in layered neural networks: ReLU vs. sigmoidal activation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    7. Phattara Khumprom & Nita Yodo, 2019. "A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm," Energies, MDPI, vol. 12(4), pages 1-21, February.
    8. Joanne C Wen & Cecilia S Lee & Pearse A Keane & Sa Xiao & Ariel S Rokem & Philip P Chen & Yue Wu & Aaron Y Lee, 2019. "Forecasting future Humphrey Visual Fields using deep learning," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-14, April.
    9. Kei Nakagawa & Masaya Abe & Junpei Komiyama, 2019. "A Robust Transferable Deep Learning Framework for Cross-sectional Investment Strategy," Papers 1910.01491, arXiv.org.
    10. Jingfen Lan & Ziheng Liao & A. K. Alvi Haque & Qiang Yu & Kun Xie & Yang Guo, 2024. "CNVbd: A Method for Copy Number Variation Detection and Boundary Search," Mathematics, MDPI, vol. 12(3), pages 1-15, January.
    11. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Baiti-Ahmad Awaluddin & Chun-Tang Chao & Juing-Shian Chiou, 2023. "Investigating Effective Geometric Transformation for Image Augmentation to Improve Static Hand Gestures with a Pre-Trained Convolutional Neural Network," Mathematics, MDPI, vol. 11(23), pages 1-23, November.
    13. González-Muñiz, Ana & Díaz, Ignacio & Cuadrado, Abel A. & García-Pérez, Diego, 2022. "Health indicator for machine condition monitoring built in the latent space of a deep autoencoder," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    14. Ke, Shaowei & Zhao, Chen, 2024. "From local utility to neural networks," Journal of Mathematical Economics, Elsevier, vol. 113(C).
    15. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum probability: A new method for modelling travel behaviour," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 165-198.
    16. Bernhard Nessler & Michael Pfeiffer & Lars Buesing & Wolfgang Maass, 2013. "Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-30, April.
    17. Xiang Zhang & Huiyi Gao & Li Wan, 2022. "Classification of Fine-Grained Crop Disease by Dilated Convolution and Improved Channel Attention Module," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    18. Artem Kuriksha, 2021. "An Economy of Neural Networks: Learning from Heterogeneous Experiences," Papers 2110.11582, arXiv.org.
    19. Bodendorf, Frank & Xie, Qiao & Merkl, Philipp & Franke, Jörg, 2022. "A multi-perspective approach to support collaborative cost management in supplier-buyer dyads," International Journal of Production Economics, Elsevier, vol. 245(C).
    20. Gianluca De Nard & Simon Hediger & Markus Leippold, 2022. "Subsampled factor models for asset pricing: The rise of Vasa," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1217-1247, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:228-:d:1038353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.