IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1929-d975116.html
   My bibliography  Save this article

Lightweight Corn Seed Disease Identification Method Based on Improved ShuffleNetV2

Author

Listed:
  • Lu Lu

    (School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China)

  • Wei Liu

    (School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China)

  • Wenbo Yang

    (School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China)

  • Manyu Zhao

    (School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China)

  • Tinghao Jiang

    (School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China)

Abstract

Assessing the quality of agricultural products is an essential step to reduce food waste. The problems of overly complex models, difficult to deploy to mobile devices, and slow real-time detection in the application of deep learning in agricultural product quality assessment requiring solutions. This paper proposes a lightweight method based on ShuffleNetV2 to identify phenotypic diseases in corn seeds and conduct experiments on a corn seed dataset. Firstly, Cycle-Consistent Adversarial Networks are used to solve the problem of unbalanced datasets, while the Efficient Channel Attention module is added to enhance network performance. After this, a 7 × 7 depthwise convolution is used to increase the effective receptive field of the network. The repetitions of basic units in ShuffleNetV2 are also reduced to lighten the network structure. Finally, experimental results indicate that the number of model parameters are 0.913 M, the computational volume is 44.75 MFLOPs and 88.5 MMAdd, and the recognition accuracy is 96.28%. The inference speed of about 9.71 ms for each image was tested on a mobile portable laptop with only a single CPU, which provides a reference for mobile deployment.

Suggested Citation

  • Lu Lu & Wei Liu & Wenbo Yang & Manyu Zhao & Tinghao Jiang, 2022. "Lightweight Corn Seed Disease Identification Method Based on Improved ShuffleNetV2," Agriculture, MDPI, vol. 12(11), pages 1-18, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1929-:d:975116
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1929/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1929/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khalied Albarrak & Yonis Gulzar & Yasir Hamid & Abid Mehmood & Arjumand Bano Soomro, 2022. "A Deep Learning-Based Model for Date Fruit Classification," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    2. Jun Li & Junpeng Wu & Jiaquan Lin & Can Li & Huazhong Lu & Caixia Lin, 2022. "Nondestructive Identification of Litchi Downy Blight at Different Stages Based on Spectroscopy Analysis," Agriculture, MDPI, vol. 12(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongliang Guo & Mingyang Li & Ruizheng Hou & Hanbo Liu & Xudan Zhou & Chunli Zhao & Xiao Chen & Lianxing Gao, 2023. "Sample Expansion and Classification Model of Maize Leaf Diseases Based on the Self-Attention CycleGAN," Sustainability, MDPI, vol. 15(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Chen & Xiaoyulong Chen & Jianwu Lin & Renyong Pan & Tengbao Cao & Jitong Cai & Dianzhi Yu & Tomislav Cernava & Xin Zhang, 2022. "DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification," Agriculture, MDPI, vol. 12(12), pages 1-22, November.
    2. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    3. Mahdieh Parsaeian & Mohammad Rahimi & Abbas Rohani & Shaneka S. Lawson, 2022. "Towards the Modeling and Prediction of the Yield of Oilseed Crops: A Multi-Machine Learning Approach," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    4. Normaisharah Mamat & Mohd Fauzi Othman & Rawad Abdulghafor & Ali A. Alwan & Yonis Gulzar, 2023. "Enhancing Image Annotation Technique of Fruit Classification Using a Deep Learning Approach," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    5. Sonam Aggarwal & Sheifali Gupta & Deepali Gupta & Yonis Gulzar & Sapna Juneja & Ali A. Alwan & Ali Nauman, 2023. "An Artificial Intelligence-Based Stacked Ensemble Approach for Prediction of Protein Subcellular Localization in Confocal Microscopy Images," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    6. Yonis Gulzar & Zeynep Ünal & Hakan Aktaş & Mohammad Shuaib Mir, 2023. "Harnessing the Power of Transfer Learning in Sunflower Disease Detection: A Comparative Study," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    7. Younés Noutfia & Ewa Ropelewska, 2022. "Comprehensive Characterization of Date Palm Fruit ‘Mejhoul’ ( Phoenix dactylifera L.) Using Image Analysis and Quality Attribute Measurements," Agriculture, MDPI, vol. 13(1), pages 1-12, December.
    8. Shanxin Zhang & Hao Feng & Shaoyu Han & Zhengkai Shi & Haoran Xu & Yang Liu & Haikuan Feng & Chengquan Zhou & Jibo Yue, 2022. "Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
    9. Jiapeng Cui & Feng Tan, 2023. "Rice Plaque Detection and Identification Based on an Improved Convolutional Neural Network," Agriculture, MDPI, vol. 13(1), pages 1-15, January.
    10. Rodrigo Cupertino Bernardes & André De Medeiros & Laercio da Silva & Leo Cantoni & Gustavo Ferreira Martins & Thiago Mastrangelo & Arthur Novikov & Clíssia Barboza Mastrangelo, 2022. "Deep-Learning Approach for Fusarium Head Blight Detection in Wheat Seeds Using Low-Cost Imaging Technology," Agriculture, MDPI, vol. 12(11), pages 1-14, October.
    11. Maged Mohammed & Ramasamy Srinivasagan & Ali Alzahrani & Nashi K. Alqahtani, 2023. "Machine-Learning-Based Spectroscopic Technique for Non-Destructive Estimation of Shelf Life and Quality of Fresh Fruits Packaged under Modified Atmospheres," Sustainability, MDPI, vol. 15(17), pages 1-24, August.
    12. Xinle Zhang & Jian Cui & Huanjun Liu & Yongqi Han & Hongfu Ai & Chang Dong & Jiaru Zhang & Yunxiang Chu, 2023. "Weed Identification in Soybean Seedling Stage Based on Optimized Faster R-CNN Algorithm," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    13. Bingru Hou & Yaohua Hu & Peng Zhang & Lixia Hou, 2022. "Potato Late Blight Severity and Epidemic Period Prediction Based on Vis/NIR Spectroscopy," Agriculture, MDPI, vol. 12(7), pages 1-17, June.
    14. Haixia Sun & Shujuan Zhang & Rui Ren & Liyang Su, 2022. "Maturity Classification of “Hupingzao” Jujubes with an Imbalanced Dataset Based on Improved MobileNet V2," Agriculture, MDPI, vol. 12(9), pages 1-16, August.
    15. Yonis Gulzar, 2023. "Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    16. Shahnawaz Ayoub & Yonis Gulzar & Jaloliddin Rustamov & Abdoh Jabbari & Faheem Ahmad Reegu & Sherzod Turaev, 2023. "Adversarial Approaches to Tackle Imbalanced Data in Machine Learning," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    17. Poonam Dhiman & Amandeep Kaur & V. R. Balasaraswathi & Yonis Gulzar & Ali A. Alwan & Yasir Hamid, 2023. "Image Acquisition, Preprocessing and Classification of Citrus Fruit Diseases: A Systematic Literature Review," Sustainability, MDPI, vol. 15(12), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1929-:d:975116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.