IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i7p306-d387067.html
   My bibliography  Save this article

Gliricidia Agroforestry Technology Adoption Potential in Selected Dryland Areas of Dodoma Region, Tanzania

Author

Listed:
  • Martha Swamila

    (School of Agricultural Economics and Business Studies, The Sokoine University of Agriculture, Morogoro P.O. Box 3007, Tanzania)

  • Damas Philip

    (School of Agricultural Economics and Business Studies, The Sokoine University of Agriculture, Morogoro P.O. Box 3007, Tanzania)

  • Adam Meshack Akyoo

    (School of Agricultural Economics and Business Studies, The Sokoine University of Agriculture, Morogoro P.O. Box 3007, Tanzania)

  • Stefan Sieber

    (The Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany
    Department of Agricultural Economics, Faculty of Life Sciences Thaer-Institute, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany)

  • Mateete Bekunda

    (International Institute of Tropical Agriculture (IITA), Duluti, Arusha P.O. Box 10, Tanzania)

  • Anthony Anderson Kimaro

    (ICRAF-Tanzania Country Programme, World Agroforestry (ICRAF), Dar es Salaam P.O. Box 6226, Tanzania)

Abstract

Declining soil fertility is one of the major problems facing producers of field crops in most dryland areas of Sub-Saharan Africa. In response to the declining soil fertility, extensive participatory research has been undertaken by the World Agroforestry (ICRAF) and smallholder farmers in Dodoma region, Tanzania. The research has, amongst others, led to the development of Gliricidia agroforestry technology. The positive impact of Gliricidia intercropping on crop yields has been established. However, information on farmers’ willingness and ability to adopt the Gliricidia agroforestry technology on their farms is limited. This study predicts the adoption of Gliricidia agroforestry and conventional mineral fertilizer use technology. Focus Group Discussions (FGDs) were conducted with groups of farmers, purposively selected based on five sets of criteria: (i) at least 2 years of experience in either trying or using Gliricidia agroforestry technology, (ii) at least 1 year of experience in either trying or using the mineral fertilizer technology (iii) at least 10 years of living in the study villages, (iv) the age of 18 years and above, and (v) sex. The Adoption and Diffusion Outcome Prediction Tool (ADOPT) was used to predict the peak adoption levels and the respective time in years. A sensitivity analysis was conducted to assess the effect of change in adoption variables on predicted peak adoption levels and time to peak adoption. The results revealed variations in peak adoption levels with Gliricidia agroforestry technology exhibiting the highest peak of 67.6% in 12 years, and that the most influential variable to the peak adoption is the upfront cost of investing in Gliricidia agroforestry and fertilizer technologies. However, in Gliricidia agroforestry technology most production costs are incurred in the first year of project establishment but impact the long term biophysical and economic benefits. Moreover, farmers practicing agroforestry technology accrue environmental benefits, such as soil erosion control. Based on the results, it is plausible to argue that Gliricidia agroforestry technology has a high adoption potential and its adoption is influenced by investment costs. We recommend two actions to attract smallholder farmers investing in agroforestry technologies. First, enhancing farmers’ access to inputs at affordable prices. Second, raising farmers’ awareness of the long-term environmental benefits of Gliricidia agroforestry technology.

Suggested Citation

  • Martha Swamila & Damas Philip & Adam Meshack Akyoo & Stefan Sieber & Mateete Bekunda & Anthony Anderson Kimaro, 2020. "Gliricidia Agroforestry Technology Adoption Potential in Selected Dryland Areas of Dodoma Region, Tanzania," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:7:p:306-:d:387067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/7/306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/7/306/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajayi, Olu Clifford & Akinnifesi, Festus K. & Sileshi, G. & Kanjipite, W., 2009. "Labour inputs and financial profitability of conventional and agroforestry-based soil fertility management practices in Zambia," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 48(3), pages 1-17, September.
    2. Thangata, P. H. & Alavalapati, J. R. R., 2003. "Agroforestry adoption in southern Malawi: the case of mixed intercropping of Gliricidia sepium and maize," Agricultural Systems, Elsevier, vol. 78(1), pages 57-71, October.
    3. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    4. Phiri, Donald & Franzel, Steven & Mafongoya, Paramu & Jere, Isaac & Katanga, Roza & Phiri, Stanslous, 2004. "Who is using the new technology? The association of wealth status and gender with the planting of improved tree fallows in Eastern Province, Zambia," Agricultural Systems, Elsevier, vol. 79(2), pages 131-144, February.
    5. Makurira, H. & Savenije, H.H.G. & Uhlenbrook, S. & Rockström, J. & Senzanje, A., 2011. "The effect of system innovations on water productivity in subsistence rainfed agricultural systems in semi-arid Tanzania," Agricultural Water Management, Elsevier, vol. 98(11), pages 1696-1703, September.
    6. Simtowe, Franklin & Kassie, Menale & Diagne, Aliou & Asfaw, Solomon & Shiferaw, Bekele & Silim, Said & Muange, Elijah, 2011. "Determinants of Agricultural Technology Adoption: The Case of Improved Pigeonpea Varieties in Tanzania," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 50(4), pages 1-21.
    7. C. Haynie, Alan & F. Layton, David, 2010. "An expected profit model for monetizing fishing location choices," Journal of Environmental Economics and Management, Elsevier, vol. 59(2), pages 165-176, March.
    8. Adesina, Akinwumi A. & Coulibaly, Ousmane N., 1998. "Policy and competitiveness of agroforestry-based technologies for maize production in Cameroon: An application of policy analysis matrix," Agricultural Economics, Blackwell, vol. 19(1-2), pages 1-13, September.
    9. Rajabu Joseph Kangile & Charles Peter Mgeni & Zena Theopist Mpenda & Stefan Sieber, 2020. "The Determinants of Farmers’ Choice of Markets for Staple Food Commodities in Dodoma and Morogoro, Tanzania," Agriculture, MDPI, vol. 10(5), pages 1-12, April.
    10. Lutengano Mwinuka & Khamaldin Daud Mutabazi & Frieder Graef & Stefan Sieber & Jeremia Makindara & Anthony Kimaro & Götz Uckert, 2017. "Simulated willingness of farmers to adopt fertilizer micro-dosing and rainwater harvesting technologies in semi-arid and sub-humid farming systems in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1237-1253, December.
    11. Monjardino, M. & Philp, J.N.M. & Kuehne, G. & Phimphachanhvongsod, V. & Sihathep, V. & Denton, M.D., 2020. "Quantifying the value of adopting a post-rice legume crop to intensify mixed smallholder farms in Southeast Asia," Agricultural Systems, Elsevier, vol. 177(C).
    12. Gershon Feder & Gerald T. O'Mara, 1982. "On Information and Innovation Diffusion: A Bayesian Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(1), pages 145-147.
    13. Akinwumi A. Adesina & Ousmane N. Coulibaly, 1998. "Policy and competitiveness of agroforestry‐based technologies for maize production in Cameroon: An application of policy analysis matrix," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 1-13, September.
    14. Rulon D. Pope, 1982. "Expected Profit, Price Change, and Risk Aversion," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(3), pages 581-584.
    15. Amir K. Abadi Ghadim & David J. Pannell, 1999. "A conceptual framework of adoption of an agricultural innovation," Agricultural Economics, International Association of Agricultural Economists, vol. 21(2), pages 145-154, October.
    16. Kuehne, Geoff & Llewellyn, Rick S. & Pannell, David J. & Wilkinson, Roger & Dolling, P. & Ewing, Michael A., 2011. "ADOPT: a tool for predicting adoption of agricultural innovations," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100570, Australian Agricultural and Resource Economics Society.
    17. Corinne Valdivia & Carla Barbieri & Michael A. Gold, 2012. "Between Forestry and Farming: Policy and Environmental Implications of the Barriers to Agroforestry Adoption," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 60(2), pages 155-175, June.
    18. Thornton, PK & Schuetz, T & Förch, W & Cramer, L & Abreu, D & Vermeulen, S & Campbell, BM, 2017. "Responding to global change: A theory of change approach to making agricultural research for development outcome-based," Agricultural Systems, Elsevier, vol. 152(C), pages 145-153.
    19. Jensen, Richard, 1982. "Adoption and diffusion of an innovation of uncertain profitability," Journal of Economic Theory, Elsevier, vol. 27(1), pages 182-193, June.
    20. Pfister, F. & Bader, H.-P. & Scheidegger, R. & Baccini, P., 2005. "Dynamic modelling of resource management for farming systems," Agricultural Systems, Elsevier, vol. 86(1), pages 1-28, October.
    21. Haggblade, Steven & Tembo, Gelson & Donovan, Cynthia, 2004. "Household Level Financial Incentives to Adoption of Conservation Agricultural Technologies in Africa," Food Security Collaborative Working Papers 54466, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    22. Kuehne, Geoff & Llewellyn, Rick & Pannell, David J. & Wilkinson, Roger & Dolling, Perry & Ouzman, Jackie & Ewing, Mike, 2017. "Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy," Agricultural Systems, Elsevier, vol. 156(C), pages 115-125.
    23. Dixon, Robert J, 1980. "Hybrid Corn Revisited," Econometrica, Econometric Society, vol. 48(6), pages 1451-1461, September.
    24. Götz Uckert & Frieder Graef & Anja Faße & Ludger Herrmann & Harry Hoffmann & Frederick C. Kahimba & Luitfred Kissoly & Hannes J. König & Christine Lambert & Henry Mahoo & Bashir Makoko & Leon Mrosso &, 2018. "ScalA-FS: expert-based ex-ante assessments of local requirements and success potential of upgrading strategies for improving food security in rural Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 841-858, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martha Swamila & Damas Philip & Adam Meshack Akyoo & Julius Manda & Lutengano Mwinuka & Philip J. Smethurst & Stefan Sieber & Anthony Anderson Kimaro, 2021. "Profitability of Gliricidia-Maize System in Selected Dryland Areas of Dodoma Region, Tanzania," Sustainability, MDPI, vol. 14(1), pages 1-13, December.
    2. Hajer Guesmi & Cyrine Darej & Piebiep Goufo & Salah Ben Youssef & Mohamed Chakroun & Hichem Ben Salem & Henrique Trindade & Nizar Moujahed, 2022. "Stubble Quality of Wheat Grown under No-Tillage and Conventional Tillage Systems, and Effects of Stubble on the Fermentation Profile of Grazing Ewes’ Ruminal Fluid," Agriculture, MDPI, vol. 12(4), pages 1-12, April.
    3. Shah Fahad & Sangram Bhanudas Chavan & Akash Ravindra Chichaghare & Appanderanda Ramani Uthappa & Manish Kumar & Vijaysinha Kakade & Aliza Pradhan & Dinesh Jinger & Gauri Rawale & Dinesh Kumar Yadav &, 2022. "Agroforestry Systems for Soil Health Improvement and Maintenance," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    4. Dominic White & Niven Winchester, 2023. "Logs or permits? Forestry land use decisions in an emissions trading scheme," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(4), pages 558-575, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oluyede Clifford Ajayi & Festus K. Akinnifesi & Gudeta Sileshi & Sebastian Chakeredza, 2007. "Adoption of renewable soil fertility replenishment technologies in the southern African region: Lessons learnt and the way forward," Natural Resources Forum, Blackwell Publishing, vol. 31(4), pages 306-317, November.
    2. Kuehne, Geoff & Llewellyn, Rick & Pannell, David J. & Wilkinson, Roger & Dolling, Perry & Ouzman, Jackie & Ewing, Mike, 2017. "Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy," Agricultural Systems, Elsevier, vol. 156(C), pages 115-125.
    3. Lutengano Mwinuka & Khamaldin Daud Mutabazi & Frieder Graef & Stefan Sieber & Jeremia Makindara & Anthony Kimaro & Götz Uckert, 2017. "Simulated willingness of farmers to adopt fertilizer micro-dosing and rainwater harvesting technologies in semi-arid and sub-humid farming systems in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1237-1253, December.
    4. Francesco Bogliacino & Giorgio Rampa, 2012. "Quality risk aversion, conjectures, and new product diffusion," Journal of Evolutionary Economics, Springer, vol. 22(5), pages 1081-1115, November.
    5. Francesco Bogliacino & Giorgio Rampa, 2010. "Monopolistic competition and new products: a conjectural equilibrium approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 5(1), pages 55-76, June.
    6. Tanui, Joseph & Groeneveld, Rolf & Klomp, Jeroen & Mowo, Jeremiahs & Ierland, Ekko C. van, 2013. "Explaining investments in sustainable land management: The role of various income sources in the smallholder farming systems of western Kenya," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 161275, African Association of Agricultural Economists (AAAE).
    7. BLAZY Jean-Marc & CARPENTIER Alain & THOMAS Alban, 2008. "An ex ante adoption model of low input innovations applied to banana growers in the French West Indies," LERNA Working Papers 08.32.276, LERNA, University of Toulouse.
    8. Kim, Tae-Kyun, 1989. "The factor bias of technical change and technology adoption under uncertainty," ISU General Staff Papers 1989010108000010138, Iowa State University, Department of Economics.
    9. Ferreira, Kevin D. & Lee, Chi-Guhn, 2014. "An integrated two-stage diffusion of innovation model with market segmented learning," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 189-201.
    10. Margarita Genius & Christos Pantzios & Vangelis Tzouvelekas, 2003. "Information Acquisition and Adoption of Organic Farming Practices: Evidence from Farm Operations in Crete, Greece," Working Papers 0305, University of Crete, Department of Economics.
    11. Burton, Michael P. & Rigby, Dan & Young, Trevor, 2003. "Modelling the adoption of organic horticultural technology in the UK using Duration Analysis," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(1), pages 1-26, March.
    12. Marie-Estelle Binet & Lionel Richefort, 2011. "Diffusion of irrigation technologies: the role of mimicking behaviour and public incentives," Applied Economics Letters, Taylor & Francis Journals, vol. 18(1), pages 43-48.
    13. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
    14. Javad Torkamani & Shahrokh Shajari, 2008. "Adoption of New Irrigation Technology Under Production Risk," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(2), pages 229-237, February.
    15. Edouard Civel & Marc Baudry, 2018. "The Fate of Inventions. What can we learn from Bayesian learning in strategic options model of adoption ?," EconomiX Working Papers 2018-47, University of Paris Nanterre, EconomiX.
    16. Fang, Di & Richards, Timothy, 2016. "New Maize Variety Adoption in Mozambique: A Spatial Approach," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235388, Agricultural and Applied Economics Association.
    17. Pardey, Philip G. & Alston, Julian M. & Ruttan, Vernon W., 2010. "The Economics of Innovation and Technical Change in Agriculture," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 939-984, Elsevier.
    18. Bacha, Radia & Gasmi, Farid, 2022. "The broadband diffusion process and its determinants in Algeria: A simultaneous estimation," TSE Working Papers 22-1309, Toulouse School of Economics (TSE).
    19. Christopher J. Blackburn & Mallory E. Flowers & Daniel C. Matisoff & Juan Moreno‐Cruz, 2020. "Do Pilot and Demonstration Projects Work? Evidence from a Green Building Program," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(4), pages 1100-1132, September.
    20. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:7:p:306-:d:387067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.