IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i11p1696-1703.html
   My bibliography  Save this article

The effect of system innovations on water productivity in subsistence rainfed agricultural systems in semi-arid Tanzania

Author

Listed:
  • Makurira, H.
  • Savenije, H.H.G.
  • Uhlenbrook, S.
  • Rockström, J.
  • Senzanje, A.

Abstract

Rainfed subsistence farming systems in sub-Saharan Africa generally obtain low crop yields as a result of highly erratic rainfall seasons. This paper presents results of research conducted to test the effects of improvements in farming techniques for subsistence rainfed systems. The research was carried out in the Makanya catchment of northern Tanzania where rainfall of less than 600 mm a-1 and spread over two agricultural seasons per year is clearly insufficient to support staple food crops under the present farming systems in the area. The research sought to prove that, with improved efficiency in tillage techniques, grain yields can improve even under the existing challenging hydro-climatic conditions. The research tested farming system innovations (SIs) at four sites located within a spatial distance of 10 km where a combination of runoff diversion (RD), on-site rain water harvesting (WH) and conservation tillage (CT) were compared against the traditional farming methods of hand-hoeing under strict rainfed conditions (Control). For RD, runoff generated from natural storms was directed into infiltration pits dug along the contour with the excavated soil deposited upward of the trenches (fanya juus). The impact of these techniques on maize yields under different SIs was investigated. The results showed that the innovations resulted in increased maize grain yields of up to 4.8 t ha-1 compared against current averages of less than 1 t ha-1. The average productivity of the available water over four seasons was calculated to range between 0.35 and 0.51 kg m-3. For the SIs that were tested, the distribution of yields within a cultivated strip showed variations with better yields obtained on the down slope side of the cultivated strip where ponding effects resulted in higher water availability for infiltration and storage. However, due to the large seasonal climate variability, statistical analysis did not show significant differences in the yields (pÂ

Suggested Citation

  • Makurira, H. & Savenije, H.H.G. & Uhlenbrook, S. & Rockström, J. & Senzanje, A., 2011. "The effect of system innovations on water productivity in subsistence rainfed agricultural systems in semi-arid Tanzania," Agricultural Water Management, Elsevier, vol. 98(11), pages 1696-1703, September.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:11:p:1696-1703
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411001090
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barron, Jennie & Okwach, George, 2005. "Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya," Agricultural Water Management, Elsevier, vol. 74(1), pages 1-21, May.
    2. Bhatt, Yogesh & Bossio, Deborah & Enfors, E. & Gordon, L. & Kongo, V. & Kosgei, J. R. & Makurira, H. & Masuki, K. & Mul, M. & Tumbo, S. D., 2006. "Smallholder system innovations in integrated watershed management (SSI): strategies of water for food and environmental security in drought-prone tropical and subtropical agro-ecosystems," IWMI Working Papers H039095, International Water Management Institute.
    3. Kongo, V. M. & Jewitt, G. P. W. & Lorentz, S. A., 2007. "Establishing a catchment monitoring network through a participatory approach: a case study from the Potshini Catchment in the Thukela River Basin, South Africa," IWMI Working Papers H040390, International Water Management Institute.
    4. Igbadun, Henry E. & Mahoo, Henry F. & Tarimo, Andrew K.P.R. & Salim, Baanda A., 2006. "Crop water productivity of an irrigated maize crop in Mkoji sub-catchment of the Great Ruaha River Basin, Tanzania," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 141-150, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Caretta, Martina Angela, 2015. "Managing variability and scarcity. An analysis of Engaruka: A Maasai smallholder irrigation farming community," Agricultural Water Management, Elsevier, vol. 159(C), pages 318-330.
    2. Rattan Lal, 2014. "Climate Strategic Soil Management," Challenges, MDPI, vol. 5(1), pages 1-32, February.
    3. Li-fang Wang & Juan Chen & Zhou-ping Shangguan, 2015. "Yield Responses of Wheat to Mulching Practices in Dryland Farming on the Loess Plateau," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-15, May.
    4. Sharda, V.N. & Dogra, Pradeep & Sena, D.R., 2015. "Comparative economic analysis of inter-crop based conservation bench terrace and conventional systems in a sub-humid climate of India," Resources, Conservation & Recycling, Elsevier, vol. 98(C), pages 30-40.
    5. Martha Swamila & Damas Philip & Adam Meshack Akyoo & Stefan Sieber & Mateete Bekunda & Anthony Anderson Kimaro, 2020. "Gliricidia Agroforestry Technology Adoption Potential in Selected Dryland Areas of Dodoma Region, Tanzania," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    6. Aluku, Hellen & Komakech, Hans Charles & van Griensven, Ann & Mahoo, Henry & Eisenreich, Steven, 2021. "Seasonal profitability of soil and water conservation techniques in semi-arid agro-ecological zones of Makanya catchment, Tanzania," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Lutengano Mwinuka & Khamaldin Daud Mutabazi & Frieder Graef & Stefan Sieber & Jeremia Makindara & Anthony Kimaro & Götz Uckert, 2017. "Simulated willingness of farmers to adopt fertilizer micro-dosing and rainwater harvesting technologies in semi-arid and sub-humid farming systems in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1237-1253, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    2. Andersson, Jafet C.M. & Zehnder, Alexander J.B. & Rockström, Johan & Yang, Hong, 2011. "Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa," Agricultural Water Management, Elsevier, vol. 98(7), pages 1113-1124, May.
    3. Igbadun, Henry E. & Tarimo, Andrew K.P.R. & Salim, Baanda A. & Mahoo, Henry F., 2007. "Evaluation of selected crop water production functions for an irrigated maize crop," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 1-10, December.
    4. Naba, W. & Moges A. & Gebremichael, A., 2020. "Evaluating the effect of in-situ rainwater harvesting techniques on maize production in moisture stress areas of humbo woreda, wolaita zone, Southern Ethiopia," International Journal of Agricultural Research, Innovation and Technology (IJARIT), IJARIT Research Foundation, vol. 10(1), June.
    5. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    6. Daniel Kyalo Willy & Arnim Kuhn, 2016. "Technology Adoption Under Variable Weather Conditions — The Case of Rain Water Harvesting in Lake Naivasha Basin, Kenya," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-25, June.
    7. Rezaei, Ehsan Eyshi & Gaiser, Thomas, 2017. "Change in crop management strategies could double the maize yield in Africa," Discussion Papers 260154, University of Bonn, Center for Development Research (ZEF).
    8. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    9. Adekalu, K.O. & Balogun, J.A. & Aluko, O.B. & Okunade, D.A. & J.W.Gowing & Faborode, M.O., 2009. "Runoff water harvesting for dry spell mitigation for cowpea in the savannah belt of Nigeria," Agricultural Water Management, Elsevier, vol. 96(11), pages 1502-1508, November.
    10. Pinhati, Filipe Sampaio Casulari & Rodrigues, Lineu Neiva & Aires de Souza, Saulo, 2020. "Modelling the impact of on-farm reservoirs on dry season water availability in an agricultural catchment area of the Brazilian savannah," Agricultural Water Management, Elsevier, vol. 241(C).
    11. Khlifi, Slaheddine & Ameur, Mehrez & Mtimet, Nadhem & Ghazouani, Nejla & Belhadj, Naoufel, 2010. "Impacts of small hill dams on agricultural development of hilly land in the Jendouba region of northwestern Tunisia," Agricultural Water Management, Elsevier, vol. 97(1), pages 50-56, January.
    12. Cucci, Giovanna & Lacolla, Giovanni & Boari, Francesca & Mastro, Mario Alberto & Cantore, Vito, 2019. "Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 118-124.
    13. Malin Falkenmark & Johan Rockström, 2008. "Building resilience to drought in desertification‐prone savannas in Sub‐Saharan Africa: The water perspective," Natural Resources Forum, Blackwell Publishing, vol. 32(2), pages 93-102, May.
    14. Assefa, Shibeshi & Biazin, Birhanu & Muluneh, Alemayehu & Yimer, Fantaw & Haileslassie, Amare, 2016. "Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia," Agricultural Water Management, Elsevier, vol. 178(C), pages 325-334.
    15. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    16. Igbadun, Henry E. & Ramalan, A.A. & Oiganji, Ezekiel, 2012. "Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria," Agricultural Water Management, Elsevier, vol. 109(C), pages 162-169.
    17. Komakech, Hans Charles & Mul, Marloes L. & van der Zaag, Pieter & Rwehumbiza, Filbert B.R., 2011. "Water allocation and management in an emerging spate irrigation system in Makanya catchment, Tanzania," Agricultural Water Management, Elsevier, vol. 98(11), pages 1719-1726, September.
    18. Zhang, Xiao-Feng & Luo, Chong-Liang & Ren, Hong-Xu & Mburu, David & Wang, Bao-Zhong & Kavagi, Levis & Wesly, Kiprotich & Nyende, Aggrey Bernard & Xiong, You-Cai, 2021. "Water productivity and its allometric mechanism in mulching cultivated maize (Zea mays L.) in semiarid Kenya," Agricultural Water Management, Elsevier, vol. 246(C).
    19. B. A. Ankidawa & I. Vanke, 2018. "Water Requirement for Maize Production in Lake Geriyo Irrigation Scheme Yola, Adamawa State, Northeastern Nigeria," Noble International Journal of Scientific Research, Noble Academic Publsiher, vol. 2(8), pages 49-59, August.
    20. Okeyo, A.I. & Mucheru-Muna, M. & Mugwe, J. & Ngetich, K.F. & Mugendi, D.N. & Diels, J. & Shisanya, C.A., 2014. "Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya," Agricultural Water Management, Elsevier, vol. 137(C), pages 52-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:11:p:1696-1703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.