IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxvy2022i2p420-431.html
   My bibliography  Save this article

Forecasting Macroeconomic Indicators for Selected European Union Countries

Author

Listed:
  • Aldona Migala-Warchol
  • Agata Surowka

Abstract

Purpose: The aim of the article is to forecast the level of economic indicators using data collected from the Databases of the Eurostat. Design/methodology/approach: The data were collected for the period from 2010 to 2022 year for selected European Union countries, Poland, Greece and Germany. Variables used in the publication are, GDP, export of goods and services and final consumption expenditure of households. In the second part of the article the method of forecast was used - ratio analysis for additive model for the indicators used GDP, export of goods and services and final consumption expenditure of households. Findings: The results showed that Poland and Greece still need to be involved in improving the macroeconomic situation of both countries, as there is still a significant difference between the results of the macroeconomic indicators forecast for these two countries compared to Germany. Practical implications: Poland and Greece must continue to improve the competitiveness of their economies. The current situation shows that there is a two-speed Union. On the basis of the results obtained, it can be seen that Germany differs significantly from Poland and Greece. Originality value: The study contributes to the discussion on the spatial differentiation of the level of development in the European Union. The results of the research and recommendations may be useful for Poland and Greece in the search for ways to more fully use the potentials of these countries.

Suggested Citation

  • Aldona Migala-Warchol & Agata Surowka, 2022. "Forecasting Macroeconomic Indicators for Selected European Union Countries," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 420-431.
  • Handle: RePEc:ers:journl:v:xxv:y:2022:i:2:p:420-431
    as

    Download full text from publisher

    File URL: https://ersj.eu/journal/2930/download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tkacz, Greg, 2001. "Neural network forecasting of Canadian GDP growth," International Journal of Forecasting, Elsevier, vol. 17(1), pages 57-69.
    2. Urasawa, Satoshi, 2014. "Real-time GDP forecasting for Japan: A dynamic factor model approach," Journal of the Japanese and International Economies, Elsevier, vol. 34(C), pages 116-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Constantina Kopitsa & Ioannis G. Tsoulos & Vasileios Charilogis & Athanassios Stavrakoudis, 2024. "Predicting the Duration of Forest Fires Using Machine Learning Methods," Future Internet, MDPI, vol. 16(11), pages 1-19, October.
    2. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    3. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    4. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
    5. Greg Tkacz & Carolyn A. Wilkins, 2006. "Linear and Threshold Forecasts of Output and Inflation with Stock and Housing Prices," Staff Working Papers 06-25, Bank of Canada.
    6. Fildes, Robert & Bretschneider, Stuart & Collopy, Fred & Lawrence, Michael & Stewart, Doug & Winklhofer, Heidi & Mentzer, John T. & Moon, Mark A., 2003. "Researching Sales Forecasting Practice: Commentaries and authors' response on "Conducting a Sales Forecasting Audit" by M.A. Moon, J.T. Mentzer & C.D. Smith," International Journal of Forecasting, Elsevier, vol. 19(1), pages 27-42.
    7. Ofori, Isaac Kwesi, 2021. "Catching The Drivers of Inclusive Growth in Sub-Saharan Africa: An Application of Machine Learning," EconStor Preprints 235482, ZBW - Leibniz Information Centre for Economics.
    8. Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.
    9. Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
    10. Ioannis A. Venetis & David A. Peel & Ivan Paya, 2004. "Asymmetry in the link between the yield spread and industrial production: threshold effects and forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 373-384.
    11. David C. Wheelock & Mark E. Wohar, 2009. "Can the term spread predict output growth and recessions? a survey of the literature," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 419-440.
    12. Rómulo Chumacero E., 2004. "Forecasting Chilean Industrial Production and Sales With Automated Procedures," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 7(3), pages 47-56, December.
    13. Kanazawa, Nobuyuki, 2020. "Radial basis functions neural networks for nonlinear time series analysis and time-varying effects of supply shocks," Journal of Macroeconomics, Elsevier, vol. 64(C).
    14. Goutam Dutta & Pankaj Jha & Arnab Kumar Laha & Neeraj Mohan, 2006. "Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 283-295, December.
    15. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    16. Seulki Chung, 2023. "Inside the black box: Neural network-based real-time prediction of US recessions," Papers 2310.17571, arXiv.org, revised May 2024.
    17. Rudrani Bhattacharya & Bornali Bhandari & Sudipto Mundle, 2023. "Nowcasting India’s Quarterly GDP Growth: A Factor-Augmented Time-Varying Coefficient Regression Model (FA-TVCRM)," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 213-234, March.
    18. Nana Geng & Yong Zhang & Yixiang Sun & Yunjian Jiang & Dandan Chen, 2015. "Forecasting China’s Annual Biofuel Production Using an Improved Grey Model," Energies, MDPI, vol. 8(10), pages 1-20, October.
    19. Janine Aron & John Muellbauer, 2002. "Interest Rate Effects on Output: Evidence from a GDP Forecasting Model for South Africa," IMF Staff Papers, Palgrave Macmillan, vol. 49(Special i), pages 185-213.
    20. Eugenia I. Toki & Giorgos Tatsis & Vasileios A. Tatsis & Konstantinos Plachouras & Jenny Pange & Ioannis G. Tsoulos, 2023. "Applying Neural Networks on Biometric Datasets for Screening Speech and Language Deficiencies in Child Communication," Mathematics, MDPI, vol. 11(7), pages 1-15, March.

    More about this item

    Keywords

    Economic indicators; GDP; final consumption expenditures; export of goods and services; European Union.;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • E2 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxv:y:2022:i:2:p:420-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.