IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v156y2024icp43-61.html
   My bibliography  Save this article

Mechanisms and implications of autonomous vehicle market penetration: Insights from a Markov forecasting model

Author

Listed:
  • Zhang, Liming
  • Yao, Xuejiao
  • Xiao, Yao
  • Zhang, Yingxin
  • Cai, Ming

Abstract

Due to the rapid evolution of autonomous driving technology and the complexity of market penetration mechanisms, establishing a reliable quantitative research approach for measuring autonomous vehicle (AV) penetration and effectively validating forecasted outcomes poses significant challenges. To address this issue, this paper overcomes data limitations by starting from the perspective of Chinese automotive market. It introduces a quantifiable Markov forecasting model that establishes the link between transition probabilities and penetration influencing factors. Through a penetration network, it visually represents the correlation and evolutionary states of AVs. Building upon the model, a framework for data quantification and analysis is formed. By quantifying model indicators with market data such as car performance and historical sales, the network parameters and transition probabilities are continuously updated in real-time. This drives the model to output short-term forecasts for AV penetration in the automotive market. In addition, we devise a two-stage simulation algorithm to accomplish parameter calibration and model validation. Through validation and comparative analysis, it is observed that, compared to direct learning from historical data, our model can more accurately forecast real market penetration trends. Furthermore, sensitivity analysis experiments on market strategies indicate that, compared to technical investment, the market exhibits a higher sensitivity to price adjustments. A strategy combination of increased technical investment in high-level vehicles and judiciously raising prices proves more advantageous for intelligent transformation in the automotive sector than a singular strategy. Additionally, as the AV market evolves, the sensitivity to favorable strategies will gradually increase. Therefore, the developmental stage of the market is a crucial factor for both car companies and investors to consider. The insights gleaned from this paper offer actionable guidance for policymakers and automotive corporations in shaping future market strategies, thereby fostering the continued growth of autonomous driving technologies within the industry.

Suggested Citation

  • Zhang, Liming & Yao, Xuejiao & Xiao, Yao & Zhang, Yingxin & Cai, Ming, 2024. "Mechanisms and implications of autonomous vehicle market penetration: Insights from a Markov forecasting model," Transport Policy, Elsevier, vol. 156(C), pages 43-61.
  • Handle: RePEc:eee:trapol:v:156:y:2024:i:c:p:43-61
    DOI: 10.1016/j.tranpol.2024.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X2400204X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    2. Xiao, Yu & Han, Jingti, 2016. "Forecasting new product diffusion with agent-based models," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 167-178.
    3. Valeri, Eva & Danielis, Romeo, 2015. "Simulating the market penetration of cars with alternative fuelpowertrain technologies in Italy," Transport Policy, Elsevier, vol. 37(C), pages 44-56.
    4. Yang, Yingchun & Liu, Jianghua & Lin, Yingying & Li, Qiongyuan, 2019. "The impact of urbanization on China’s residential energy consumption," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 170-182.
    5. Ramin Shabanpour & Ali Shamshiripour & Abolfazl Mohammadian, 2018. "Modeling adoption timing of autonomous vehicles: innovation diffusion approach," Transportation, Springer, vol. 45(6), pages 1607-1621, November.
    6. Kenesei, Zsófia & Ásványi, Katalin & Kökény, László & Jászberényi, Melinda & Miskolczi, Márk & Gyulavári, Tamás & Syahrivar, Jhanghiz, 2022. "Trust and perceived risk: How different manifestations affect the adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 379-393.
    7. Du, Manqing & Zhang, Tingru & Liu, Jinting & Xu, Zhigang & Liu, Peng, 2022. "Rumors in the air? Exploring public misconceptions about automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 237-252.
    8. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    9. Bansal, Prateek & Kockelman, Kara M., 2017. "Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 49-63.
    10. Makridakis, Spyros & Hogarth, Robin M. & Gaba, Anil, 2009. "Forecasting and uncertainty in the economic and business world," International Journal of Forecasting, Elsevier, vol. 25(4), pages 794-812, October.
    11. Karen E. Dynan, 2000. "Habit Formation in Consumer Preferences: Evidence from Panel Data," American Economic Review, American Economic Association, vol. 90(3), pages 391-406, June.
    12. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    13. Jiang, Like & Chen, Haibo & Paschalidis, Evangelos, 2023. "Diffusion of connected and autonomous vehicles concerning mode choice, policy interventions and sustainability impacts: A system dynamics modelling study," Transport Policy, Elsevier, vol. 141(C), pages 274-290.
    14. Alina-Petronela Haller & Ovidiu Gherasim & Mariana B?lan & Carmen Uzl?u, 2020. "Medium-term forecast of European economic sustainable growth using Markov chains," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 38(2), pages 585-618.
    15. Wang, Fei & Zhang, Zhentai & Lin, Shoufu, 2023. "Purchase intention of Autonomous vehicles and industrial Policies: Evidence from a national survey in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    16. Jeong-Gil Choi & Jin-Won Mok & Jin-Soo Han, 2011. "The Use of Markov Chains to Estimate Destination Switching and Market Share," Tourism Economics, , vol. 17(6), pages 1181-1196, December.
    17. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    18. Raj, Alok & Kumar, J. Ajith & Bansal, Prateek, 2020. "A multicriteria decision making approach to study barriers to the adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 122-137.
    19. Eva Ascarza & Oded Netzer & Bruce G. S. Hardie, 2018. "Some Customers Would Rather Leave Without Saying Goodbye," Marketing Science, INFORMS, vol. 37(1), pages 54-77, January.
    20. Kaltenhäuser, Bernd & Werdich, Karl & Dandl, Florian & Bogenberger, Klaus, 2020. "Market development of autonomous driving in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 882-910.
    21. Forrest W. Crawford & Vladimir N. Minin & Marc A. Suchard, 2014. "Estimation for General Birth-Death Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 730-747, June.
    22. Monika Stoma & Agnieszka Dudziak & Jacek Caban & Paweł Droździel, 2021. "The Future of Autonomous Vehicles in the Opinion of Automotive Market Users," Energies, MDPI, vol. 14(16), pages 1-19, August.
    23. Rotaris, Lucia & Scorrano, Mariangela, 2023. "Insights into peer-to-peer carsharing: Modelling and scenario analysis via a Bass diffusion agent-based model," Research in Transportation Economics, Elsevier, vol. 97(C).
    24. Puylaert, S. & Snelder, M. & van Nes, R. & van Arem, B., 2018. "Mobility impacts of early forms of automated driving – A system dynamic approach," Transport Policy, Elsevier, vol. 72(C), pages 171-179.
    25. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    26. Kroesen, Maarten & Milakis, Dimitris & van Wee, Bert, 2023. "Automated Vehicles: Changes in expert opinions over time," Transport Policy, Elsevier, vol. 136(C), pages 1-10.
    27. Wang, Kaili & Salehin, Mohammad Faizus & Nurul Habib, Khandker, 2021. "A discrete choice experiment on consumer’s willingness-to-pay for vehicle automation in the Greater Toronto Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 12-30.
    28. Wu, Jingwen & Liao, Hua & Wang, Jin-Wei, 2020. "Analysis of consumer attitudes towards autonomous, connected, and electric vehicles: A survey in China," Research in Transportation Economics, Elsevier, vol. 80(C).
    29. Hudson, John & Orviska, Marta & Hunady, Jan, 2019. "People’s attitudes to autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 164-176.
    30. Thurner, Thomas & Fursov, Konstantin & Nefedova, Alena, 2022. "Early adopters of new transportation technologies: Attitudes of Russia’s population towards car sharing, the electric car and autonomous driving," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 403-417.
    31. Behnood, Ali & Haghani, Milad & Golafshani, Emadaldin Mohammadi, 2022. "Determinants of purchase likelihood for partially and fully automated vehicles: Insights from mixed logit model with heterogeneity in means and variances," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 119-139.
    32. Rejali, Sina & Aghabayk, Kayvan & Esmaeli, Saeed & Shiwakoti, Nirajan, 2023. "Comparison of technology acceptance model, theory of planned behavior, and unified theory of acceptance and use of technology to assess a priori acceptance of fully automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    2. Mao, Wei & Shepherd, Simon & Harrison, Gillian & Xu, Meng, 2024. "Autonomous vehicle market development in Beijing: A system dynamics approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    3. Jiang, Like & Chen, Haibo & Paschalidis, Evangelos, 2023. "Diffusion of connected and autonomous vehicles concerning mode choice, policy interventions and sustainability impacts: A system dynamics modelling study," Transport Policy, Elsevier, vol. 141(C), pages 274-290.
    4. Ljubi, Klara & Groznik, Aleš, 2023. "Role played by social factors and privacy concerns in autonomous vehicle adoption," Transport Policy, Elsevier, vol. 132(C), pages 1-15.
    5. Yilun Chen & Nirajan Shiwakoti & Peter Stasinopoulos & Shah Khalid Khan, 2022. "State-of-the-Art of Factors Affecting the Adoption of Automated Vehicles," Sustainability, MDPI, vol. 14(11), pages 1-29, May.
    6. Wang, Song & Li, Zhixia & Wang, Yi & Aaron Wyatt, Daniel, 2022. "How do age and gender influence the acceptance of automated vehicles? – Revealing the hidden mediating effects from the built environment and personal factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 376-394.
    7. Simpson, Jesse R. & Mishra, Sabyasachee, 2021. "Developing a methodology to predict the adoption rate of Connected Autonomous Trucks in transportation organizations using peer effects," Research in Transportation Economics, Elsevier, vol. 90(C).
    8. Jen Sim Ho & Booi Chen Tan & Teck Chai Lau & Nasreen Khan, 2023. "Public Acceptance towards Emerging Autonomous Vehicle Technology: A Bibliometric Research," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    9. Rejali, Sina & Aghabayk, Kayvan & Esmaeli, Saeed & Shiwakoti, Nirajan, 2023. "Comparison of technology acceptance model, theory of planned behavior, and unified theory of acceptance and use of technology to assess a priori acceptance of fully automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 168(C).
    10. Shari, Babajide Epe & Dioha, Michael O. & Abraham-Dukuma, Magnus C. & Sobanke, Victor O. & Emodi, Nnaemeka V., 2022. "Clean cooking energy transition in Nigeria: Policy implications for Developing countries," Journal of Policy Modeling, Elsevier, vol. 44(2), pages 319-343.
    11. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    12. Ma, Jiaxin & Chen, Xumei & Zhang, Xiaomei & Zhang, Yixin & Yu, Lei, 2024. "Exploring the willingness to pay for high-occupancy toll lanes under conditions of low familiarity," Transport Policy, Elsevier, vol. 154(C), pages 142-156.
    13. Mona Kabus & Lars Nolting & Benedict J. Mortimer & Jan C. Koj & Wilhelm Kuckshinrichs & Rik W. De Doncker & Aaron Praktiknjo, 2020. "Environmental Impacts of Charging Concepts for Battery Electric Vehicles: A Comparison of On-Board and Off-Board Charging Systems Based on a Life Cycle Assessment," Energies, MDPI, vol. 13(24), pages 1-31, December.
    14. Reddy, B. Sudhakara, 2018. "Economic dynamics and technology diffusion in indian power sector," Energy Policy, Elsevier, vol. 120(C), pages 425-435.
    15. Kassens-Noor, Eva & Kotval-Karamchandani, Zeenat & Cai, Meng, 2020. "Willingness to ride and perceptions of autonomous public transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 92-104.
    16. Liu, Xueying & Madlener, Reinhard, 2019. "Get Ready for Take-Off: A Two-Stage Model of Aircraft Market Diffusion," FCN Working Papers 15/2019, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    17. Zhang, Cen & Schmöcker, Jan-Dirk & Kuwahara, Masahiro & Nakamura, Toshiyuki & Uno, Nobuhiro, 2020. "A diffusion model for estimating adoption patterns of a one-way carsharing system in its initial years," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 135-150.
    18. Xiaobei Jiang & Wenlin Yu & Wenjie Li & Jiawen Guo & Xizheng Chen & Hongwei Guo & Wuhong Wang & Tao Chen, 2021. "Factors Affecting the Acceptance and Willingness-to-Pay of End-Users: A Survey Analysis on Automated Vehicles," Sustainability, MDPI, vol. 13(23), pages 1-12, November.
    19. Guo, Yuntao & Souders, Dustin & Labi, Samuel & Peeta, Srinivas & Benedyk, Irina & Li, Yujie, 2021. "Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 364-398.
    20. Reda Cherif & Fuad Hasanov & Aditya Pande, 2021. "Riding the Energy Transition: Oil beyond 2040," Asian Economic Policy Review, Japan Center for Economic Research, vol. 16(1), pages 117-137, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:156:y:2024:i:c:p:43-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.