IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v93y2018i1d10.1007_s11069-018-3310-3.html
   My bibliography  Save this article

A resilience optimization model for transportation networks under disasters

Author

Listed:
  • Tsai-Yun Liao

    (National Chiayi University)

  • Ta-Yin Hu

    (National Cheng Kung University)

  • Yi-No Ko

    (National Cheng Kung University)

Abstract

Natural and/or man-made disasters have caused serious problems in transportation systems due to their unpredictable and destructive characteristics. Under disasters, transportation infrastructure plays an important role in emergency management; however, this infrastructure is also vulnerable because of disasters. One way to describe the vulnerable is through resilience. Resilience refers to the ability to recover from a disruption under unexpected conditions, such as natural and/or man-made disasters. How to enhance resilience of transportation infrastructure under disasters is an important issue when facing natural or man-made disasters. This study aims to measure and optimize transportation resilience under disasters. An optimization model for resilience under the constraints of budget and traversal time is proposed. One special feature is that preparedness and recovery activities are implicitly considered and incorporated within the optimization model. The mathematical model provides a good connection between preparedness/recovery activities and network-level resilience. In order to illustrate the proposed model, a real city network and assumptions on activities of emergency management are used in a series of numerical experiments. Traffic conditions before and after disasters are evaluated by the simulation-assignment model, DynaTAIWAN. Experiments and results illustrate advantages for network-level transportation resilience assessment and also prioritize preparedness and recovery activities under budget constraints.

Suggested Citation

  • Tsai-Yun Liao & Ta-Yin Hu & Yi-No Ko, 2018. "A resilience optimization model for transportation networks under disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 469-489, August.
  • Handle: RePEc:spr:nathaz:v:93:y:2018:i:1:d:10.1007_s11069-018-3310-3
    DOI: 10.1007/s11069-018-3310-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3310-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3310-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Turnquist & Eric Vugrin, 2013. "Design for resilience in infrastructure distribution networks," Environment Systems and Decisions, Springer, vol. 33(1), pages 104-120, March.
    2. Reggiani, Aura, 2013. "Network resilience for transport security: Some methodological considerations," Transport Policy, Elsevier, vol. 28(C), pages 63-68.
    3. Cox, Andrew & Prager, Fynnwin & Rose, Adam, 2011. "Transportation security and the role of resilience: A foundation for operational metrics," Transport Policy, Elsevier, vol. 18(2), pages 307-317, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jinqu & Liu, Jie & Peng, Qiyuan & Yin, Yong, 2022. "Resilience assessment of an urban rail transit network: A case study of Chengdu subway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    2. Mohammad Zaher Serdar & Sami G. Al-Ghamdi, 2021. "Resiliency Assessment of Road Networks during Mega Sport Events: The Case of FIFA World Cup Qatar 2022," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    3. Himadri Sen Gupta & Omar M. Nofal & Andrés D. González & Charles D. Nicholson & John W. van de Lindt, 2022. "Optimal Selection of Short- and Long-Term Mitigation Strategies for Buildings within Communities under Flooding Hazard," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    4. Li, Yang & Wu, Jialu & Xiao, Yunjiang & Hu, Hangqi & Wang, Wei & Chen, Jun, 2024. "Resilience analysis of highway network under rainfall using a data-driven percolation theory-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    5. Meng Wei & Jiangang Xu & Yiwen Wang, 2022. "Resilience Assessment of Traffic Networks in Coastal Cities under Climate Change: A Case Study of One City with Unique Land Use Characteristics," Land, MDPI, vol. 11(10), pages 1-21, October.
    6. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    7. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Malandri, Caterina & Mantecchini, Luca & Postorino, Maria Nadia, 2023. "A comprehensive approach to assess transportation system resilience towards disruptive events. Case study on airside airport systems," Transport Policy, Elsevier, vol. 139(C), pages 109-122.
    9. Milad Zamanifar & Timo Hartmann, 2020. "Optimization-based decision-making models for disaster recovery and reconstruction planning of transportation networks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 1-25, October.
    10. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    11. Rita Der Sarkissian & Anas Dabaj & Youssef Diab & Marc Vuillet, 2021. "Evaluating the Implementation of the “Build-Back-Better” Concept for Critical Infrastructure Systems: Lessons from Saint-Martin’s Island Following Hurricane Irma," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    12. Jiangbin Zhao & Mengtao Liang & Zaoyan Zhang & Xiangang Cao & Qi Lu & Zhiqiang Cai, 2023. "Post-Disaster Resilience Optimization for Road–Bridge Transportation Systems Considering Economic Loss," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    13. Azucena Román-de la Sancha & Rodolfo Silva, 2020. "Multivariable Analysis of Transport Network Seismic Performance: Mexico City," Sustainability, MDPI, vol. 12(22), pages 1-40, November.
    14. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    15. Tao Ji & Yanhong Yao & Yue Dou & Shejun Deng & Shijun Yu & Yunqiang Zhu & Huajun Liao, 2022. "The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events," Sustainability, MDPI, vol. 14(7), pages 1-16, March.
    16. Davide Forcellini, 2023. "The Role of Redundancy of Infrastructures on the Seismic Resilience (SR) of Sustainable Communities," Sustainability, MDPI, vol. 15(15), pages 1-13, August.
    17. Farnaz Khaghani & Farrokh Jazizadeh, 2020. "mD-Resilience: A Multi-Dimensional Approach for Resilience-Based Performance Assessment in Urban Transportation," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    18. Liu, Aijun & Li, Zengxian & Shang, Wen-Long & Ochieng, Washington, 2023. "Performance evaluation model of transportation infrastructure: Perspective of COVID-19," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    19. Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    20. Qingjie Qi & Yangyang Meng & Xiaofei Zhao & Jianzhong Liu, 2022. "Resilience Assessment of an Urban Metro Complex Network: A Case Study of the Zhengzhou Metro," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    21. Wang, Xinglong & Peng, Jinhan & Tang, Junqing & Lu, Qiuchen & Li, Xiaowei, 2022. "Investigating the impact of adding new airline routes on air transportation resilience in China," Transport Policy, Elsevier, vol. 125(C), pages 79-95.
    22. Zhang, Wangxin & Han, Qiang & Shang, Wen-Long & Xu, Chengshun, 2024. "Seismic resilience assessment of interdependent urban transportation-electric power system under uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    2. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Li, Zhaolong & Jin, Chun & Hu, Pan & Wang, Cong, 2019. "Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 503-514.
    4. Adrian J. Hickford & Simon P. Blainey & Alejandro Ortega Hortelano & Raghav Pant, 2018. "Resilience engineering: theory and practice in interdependent infrastructure systems," Environment Systems and Decisions, Springer, vol. 38(3), pages 278-291, September.
    5. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    6. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    7. Hadi Alizadeh & Ayyoob Sharifi, 2020. "Assessing Resilience of Urban Critical Infrastructure Networks: A Case Study of Ahvaz, Iran," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    8. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    9. Zavitsas, Konstantinos & Zis, Thalis & Bell, Michael G.H., 2018. "The impact of flexible environmental policy on maritime supply chain resilience," Transport Policy, Elsevier, vol. 72(C), pages 116-128.
    10. Jing, Weiwei & Xu, Xiangdong & Pu, Yichao, 2020. "Route redundancy-based approach to identify the critical stations in metro networks: A mean-excess probability measure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Liu, Qing & Yang, Yang & Ng, Adolf K.Y. & Jiang, Changmin, 2023. "An analysis on the resilience of the European port network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    12. Lu, Qing-Chang, 2018. "Modeling network resilience of rail transit under operational incidents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 227-237.
    13. Zhenhua Chen & Adam Rose, 2018. "Economic resilience to transportation failure: a computable general equilibrium analysis," Transportation, Springer, vol. 45(4), pages 1009-1027, July.
    14. Kunovjanek, Maximilian & Wankmüller, Christian, 2021. "Containing the COVID-19 pandemic with drones - Feasibility of a drone enabled back-up transport system," Transport Policy, Elsevier, vol. 106(C), pages 141-152.
    15. Adjetey-Bahun, Kpotissan & Birregah, Babiga & Châtelet, Eric & Planchet, Jean-Luc, 2016. "A model to quantify the resilience of mass railway transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 1-14.
    16. Yao He & Yongchun Yang & Meimei Wang & Xudong Zhang, 2022. "Resilience Analysis of Container Port Shipping Network Structure: The Case of China," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    17. Ali Shahabi & Sadigh Raissi & Kaveh Khalili-Damghani & Meysam Rafei, 2021. "Designing a resilient skip-stop schedule in rapid rail transit using a simulation-based optimization methodology," Operational Research, Springer, vol. 21(3), pages 1691-1721, September.
    18. Mo, Baichuan & Koutsopoulos, Haris N. & Zhao, Jinhua, 2022. "Inferring passenger responses to urban rail disruptions using smart card data: A probabilistic framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    19. Kammouh, Omar & Gardoni, Paolo & Cimellaro, Gian Paolo, 2020. "Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    20. Ouyang, Min & Liu, Chuang & Xu, Min, 2019. "Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:93:y:2018:i:1:d:10.1007_s11069-018-3310-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.