IDEAS home Printed from https://ideas.repec.org/a/taf/transr/v39y2019i1p129-151.html
   My bibliography  Save this article

Automated vehicles: exploring possible consequences of government (non)intervention for congestion and accessibility

Author

Listed:
  • Tom Cohen
  • Clémence Cavoli

Abstract

Academic research on automated vehicles (AVs) has to date been dominated by the fields of engineering and computer science. Questions of how this potentially transformative technology should be governed remain under-researched and tend to concentrate on governing the technology’s early development. We respond in this paper by exploring the possible longer-term effect of government (lack of) intervention.The paper tests the hypothesis that a “laissez-faire” governance approach is likely to produce less desirable outcomes in a scenario of mass uptake of AVs than would a well-planned set of government interventions. This is done using two prominent themes in transport policy – traffic flow and accessibility – in a scenario of high market penetration of Level-5 automated vehicles in capitalist market economies. The evidence used is drawn from a literature review and from the findings of a set of workshops with stakeholders.We suggest that a laissez-faire approach will lead to an increase in traffic volume as a result of a growing population of “drivers” and a probable increase in kilometres driven per passenger. At the same time, the hoped-for increases in network efficiency commonly claimed are not guaranteed to come about without appropriate government intervention. The likely consequence is an increase in congestion. And, with respect to accessibility, it is likely that the benefits of AVs will be enjoyed by wealthier individuals and that the wider impacts of AV use (including sprawl) may lead to a deterioration in accessibility for those who depend on walking, cycling or collective transport.We consider the range of possible government intervention in five categories: Planning/land-use; Regulation/policy; Infrastructure/technology; Service provision; and Economic instruments. For each category, we set out a series of interventions that might be used by governments (at city, region or state level) to manage congestion or protect accessibility in the AV scenario described. Many of these (e.g. road pricing) are already part of the policy mix but some (e.g. ban empty running of AVs) would be new. We find that all interventions applicable to the management of traffic flow would also be expected to contribute to the management of accessibility; we define a small number of additional interventions aimed at protecting the accessibility of priority groups.Our general finding is that the adoption of a package of these interventions could be expected to lead to better performance against generic traffic-flow and accessibility objectives than would a laissez-faire approach, though questions of extent of application remain.In our conclusions, we contrast laissez-faire with both anticipatory governance and “precautionary” governance and acknowledge the political difficulty associated with acting in the context of uncertainty. We point out that AVs do not represent the first emerging technology to offer both opportunities and risks and challenge governments at all levels to acknowledge the extent of their potential influence and, in particular, to examine methodically the options available to them and the potential consequences of pursuing them.

Suggested Citation

  • Tom Cohen & Clémence Cavoli, 2019. "Automated vehicles: exploring possible consequences of government (non)intervention for congestion and accessibility," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 129-151, January.
  • Handle: RePEc:taf:transr:v:39:y:2019:i:1:p:129-151
    DOI: 10.1080/01441647.2018.1524401
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01441647.2018.1524401
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01441647.2018.1524401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    2. Pettigrew, Simone & Booth, Leon & Farrar, Victoria & Brown, Julie & Karl, Charles & Godic, Branislava & Vidanaarachchi, Rajith & Thompson, Jason, 2024. "Public support for proposed government policies to optimise the social benefits of autonomous vehicles," Transport Policy, Elsevier, vol. 149(C), pages 264-270.
    3. González-González, Esther & Nogués, Soledad & Stead, Dominic, 2020. "Parking futures: Preparing European cities for the advent of automated vehicles," Land Use Policy, Elsevier, vol. 91(C).
    4. Qirui Li, 2020. "Resilience Thinking as a System Approach to Promote China’s Sustainability Transitions," Sustainability, MDPI, vol. 12(12), pages 1-27, June.
    5. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    6. Pel, Bonno & Raven, Rob & van Est, Rinie, 2020. "Transitions governance with a sense of direction: synchronization challenges in the case of the dutch ‘Driverless Car’ transition," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    7. Wang, Fei & Zhang, Zhentai & Lin, Shoufu, 2023. "Purchase intention of Autonomous vehicles and industrial Policies: Evidence from a national survey in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    8. Darren Shannon & Tim Jannusch & Florian David‐Spickermann & Martin Mullins & Martin Cunneen & Finbarr Murphy, 2021. "Connected and autonomous vehicle injury loss events: Potential risk and actuarial considerations for primary insurers," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(1), pages 5-35, March.
    9. Shatanawi, Mohamad & Alatawneh, Anas & Mészáros, Ferenc, 2022. "Implications of static and dynamic road pricing strategies in the era of autonomous and shared autonomous vehicles using simulation-based dynamic traffic assignment: The case of Budapest," Research in Transportation Economics, Elsevier, vol. 95(C).
    10. Schubert, Daniel & Sys, Christa & Vanelslander, Thierry & Roumboutsos, Athena, 2022. "No-queue road pricing: A comprehensive policy instrument for Europe?," Utilities Policy, Elsevier, vol. 78(C).
    11. Yefang Zhou & Hitomi Sato & Toshiyuki Yamamoto, 2021. "Shared Low-Speed Autonomous Vehicle System for Suburban Residential Areas," Sustainability, MDPI, vol. 13(15), pages 1-15, August.
    12. Agrawal, Shubham & Schuster, Amy M. & Britt, Noah & Mack, Elizabeth A. & Tidwell, Michael L. & Cotten, Shelia R., 2023. "Building on the past to help prepare the workforce for the future with automated vehicles: A systematic review of automated passenger vehicle deployment timelines," Technology in Society, Elsevier, vol. 72(C).
    13. Chris Tennant & Susan Howard & Sally Stares, 2021. "Building the UK vision of a driverless future: A Parliamentary Inquiry case study," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-14, December.
    14. Sha, Kritika & Taeihagh, Araz & De Jong, Martin, 2024. "Governing disruptive technologies for inclusive development in cities: A systematic literature review," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    15. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    16. Bahrami, Sina & Roorda, Matthew J., 2020. "Optimal traffic management policies for mixed human and automated traffic flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 130-143.
    17. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    18. Almlöf, Erik & Nybacka, Mikael & Pernestål, Anna & Jenelius, Erik, 2022. "Will leisure trips be more affected than work trips by autonomous technology? Modelling self-driving public transport and cars in Stockholm, Sweden," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 1-19.
    19. Sarri, Paraskevi & Kaparias, Ioannis & Preston, John & Simmonds, David, 2023. "Using Land Use and Transportation Interaction (LUTI) models to determine land use effects from new vehicle transportation technologies; a regional scale of analysis," Transport Policy, Elsevier, vol. 135(C), pages 91-111.
    20. Kerstin Stark & Anton Galich, 2020. "Acceptable Automobility through Automated Driving. Insights into the Requirements for Different Mobility Configurations and an Evaluation of Suitable Use Cases," Sustainability, MDPI, vol. 12(21), pages 1-22, November.
    21. Su-Yen Chen & Hsin-Yu Kuo & Chiachun Lee, 2020. "Preparing Society for Automated Vehicles: Perceptions of the Importance and Urgency of Emerging Issues of Governance, Regulations, and Wider Impacts," Sustainability, MDPI, vol. 12(19), pages 1-20, September.
    22. Whiston, Michael M. & Lima Azevedo, Inês M. & Litster, Shawn & Samaras, Constantine & Whitefoot, Kate S. & Whitacre, Jay F., 2022. "Expert elicitation on paths to advance fuel cell electric vehicles," Energy Policy, Elsevier, vol. 160(C).
    23. Kroesen, Maarten & Milakis, Dimitris & van Wee, Bert, 2023. "Automated Vehicles: Changes in expert opinions over time," Transport Policy, Elsevier, vol. 136(C), pages 1-10.
    24. Robert Martin, 2021. "AV futures or futures with AVs? Bridging sociotechnical imaginaries and a multi-level perspective of autonomous vehicle visualisations in praxis," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    25. Sears, Sean & Moataz, Mohamed & Ferguson, Mark & Razavi, Saiedeh & Páez, Antonio, 2022. "Perceived barriers to the movement of goods in Canada: A grounded theory investigation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 27-45.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transr:v:39:y:2019:i:1:p:129-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TTRV20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.