IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v106y2021icp141-152.html
   My bibliography  Save this article

Containing the COVID-19 pandemic with drones - Feasibility of a drone enabled back-up transport system

Author

Listed:
  • Kunovjanek, Maximilian
  • Wankmüller, Christian

Abstract

The COVID-19 pandemic has profoundly altered common social and economic patterns as governments all over the world have been forced to take drastic measures to counter the spread of the disease. Among them, quarantine, the closure of borders, and social distancing are the ones that have affected transportation systems most severely. With the clear need to avoid all unnecessary direct human contact, an increased interest in contactless transportation and delivery modes emerged. Drones are a promising alternative in this regard, especially for the delivery of essential goods, such as COVID-19 viral tests. In this study, we therefore investigate how drones can be used to distribute viral tests to potentially infected patients. The novel approach that we propose is to use existing drone infrastructure to perform this task, where drones owned and operated by different public and private entities are retrofitted for the distribution of essential goods in the case of emergency. In a wider sense, we hence suggest the establishment of a drone enabled back-up transport system. Potential performance gains are analyzed through a mathematical time and cost model that was developed in close cooperation with the state Red Cross Organization and a utility drone manufacturer. Process design as well as parameter estimation are based on empirical investigation including, but not limited to, accompanying a COVID-19 mobile testing team in the field. The practical feasibility was verified by retrofitting drones initially assigned to other purposes. Additionally, policy recommendations, such as the establishment of public-public and public-private partnerships, were identified.

Suggested Citation

  • Kunovjanek, Maximilian & Wankmüller, Christian, 2021. "Containing the COVID-19 pandemic with drones - Feasibility of a drone enabled back-up transport system," Transport Policy, Elsevier, vol. 106(C), pages 141-152.
  • Handle: RePEc:eee:trapol:v:106:y:2021:i:c:p:141-152
    DOI: 10.1016/j.tranpol.2021.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X21000779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2021.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manca, Davide & Brambilla, Sara, 2011. "A methodology based on the Analytic Hierarchy Process for the quantitative assessment of emergency preparedness and response in road tunnels," Transport Policy, Elsevier, vol. 18(5), pages 657-664, September.
    2. Pip Wallace & Ross Martin & Iain White, 2018. "Keeping pace with technology: drones, disturbance and policy deficiency," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(7), pages 1271-1288, June.
    3. Kiel M. Martin & Daniel J. Richmond & John G. Swisher, 2017. "Sustaining the Drone Enterprise: How Manpower Analysis Engendered Policy Reform in the United States Air Force," Interfaces, INFORMS, vol. 47(2), pages 137-149, April.
    4. John Gunnar Carlsson & Siyuan Song, 2018. "Coordinated Logistics with a Truck and a Drone," Management Science, INFORMS, vol. 64(9), pages 4052-4069, September.
    5. Mahmoud Golabi & Seyed Mahdi Shavarani & Gokhan Izbirak, 2017. "An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1545-1565, July.
    6. Alper Döyen & Necati Aras, 2019. "An Integrated Disaster Preparedness Model for Retrofitting and Relief Item Transportation," Networks and Spatial Economics, Springer, vol. 19(4), pages 1031-1068, December.
    7. Catherine Cleophas & Jan Ehmke, 2014. "When Are Deliveries Profitable?," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(3), pages 153-163, June.
    8. Christian Wankmüller & Christian Truden & Christopher Korzen & Philipp Hungerländer & Ewald Kolesnik & Gerald Reiner, 2020. "Optimal allocation of defibrillator drones in mountainous regions," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 785-814, September.
    9. Knofius, N. & van der Heijden, M.C. & Zijm, W.H.M., 2019. "Consolidating spare parts for asset maintenance with additive manufacturing," International Journal of Production Economics, Elsevier, vol. 208(C), pages 269-280.
    10. Bösch, Patrick M. & Becker, Felix & Becker, Henrik & Axhausen, Kay W., 2018. "Cost-based analysis of autonomous mobility services," Transport Policy, Elsevier, vol. 64(C), pages 76-91.
    11. Chowdhury, Sudipta & Emelogu, Adindu & Marufuzzaman, Mohammad & Nurre, Sarah G. & Bian, Linkan, 2017. "Drones for disaster response and relief operations: A continuous approximation model," International Journal of Production Economics, Elsevier, vol. 188(C), pages 167-184.
    12. Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
    13. Reggiani, Aura, 2013. "Network resilience for transport security: Some methodological considerations," Transport Policy, Elsevier, vol. 28(C), pages 63-68.
    14. Cox, Andrew & Prager, Fynnwin & Rose, Adam, 2011. "Transportation security and the role of resilience: A foundation for operational metrics," Transport Policy, Elsevier, vol. 18(2), pages 307-317, March.
    15. Chengpeng Wan & Zaili Yang & Di Zhang & Xinping Yan & Shiqi Fan, 2018. "Resilience in transportation systems: a systematic review and future directions," Transport Reviews, Taylor & Francis Journals, vol. 38(4), pages 479-498, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ali Ülkü & James H. Bookbinder & Nam Yi Yun, 2024. "Leveraging Industry 4.0 Technologies for Sustainable Humanitarian Supply Chains: Evidence from the Extant Literature," Sustainability, MDPI, vol. 16(3), pages 1-26, February.
    2. Elif Bozkaya & Levent Eriskin & Mumtaz Karatas, 2023. "Data analytics during pandemics: a transportation and location planning perspective," Annals of Operations Research, Springer, vol. 328(1), pages 193-244, September.
    3. Muhammad Saleem Sumbal & Waqas Ahmed & Huzeifa Shahzeb & Felix Chan, 2023. "Sustainable Technology Strategies for Transportation and Logistics Challenges: An Implementation Feasibility Study," Sustainability, MDPI, vol. 15(21), pages 1-19, October.
    4. Yi Li & Min Liu & Dandan Jiang, 2022. "Application of Unmanned Aerial Vehicles in Logistics: A Literature Review," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    5. Ahmed Karam & Abdelrahman E. E. Eltoukhy & Ibrahim Abdelfadeel Shaban & El-Awady Attia, 2022. "A Review of COVID-19-Related Literature on Freight Transport: Impacts, Mitigation Strategies, Recovery Measures, and Future Research Directions," IJERPH, MDPI, vol. 19(19), pages 1-27, September.
    6. Lijing Du & Xiaohuan Li & Yuan Gan & Kaijun Leng, 2022. "Optimal Model and Algorithm of Medical Materials Delivery Drone Routing Problem under Major Public Health Emergencies," Sustainability, MDPI, vol. 14(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    2. Hadi Alizadeh & Ayyoob Sharifi, 2020. "Assessing Resilience of Urban Critical Infrastructure Networks: A Case Study of Ahvaz, Iran," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    3. Dukkanci, Okan & Campbell, James F. & Kara, Bahar Y., 2024. "Facility location decisions for drone delivery: A literature review," European Journal of Operational Research, Elsevier, vol. 316(2), pages 397-418.
    4. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    5. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Edwar Forero-Ortiz & Eduardo Martínez-Gomariz & Manuel Cañas Porcuna & Luca Locatelli & Beniamino Russo, 2020. "Flood Risk Assessment in an Underground Railway System under the Impact of Climate Change—A Case Study of the Barcelona Metro," Sustainability, MDPI, vol. 12(13), pages 1-26, June.
    8. Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    9. Dukkanci, Okan & Koberstein, Achim & Kara, Bahar Y., 2023. "Drones for relief logistics under uncertainty after an earthquake," European Journal of Operational Research, Elsevier, vol. 310(1), pages 117-132.
    10. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    11. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    12. Moshref-Javadi, Mohammad & Lee, Seokcheon & Winkenbach, Matthias, 2020. "Design and evaluation of a multi-trip delivery model with truck and drones," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    13. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Prager, Fynnwin & Rhoads, Mohja & Martínez, Jose N., 2022. "The COVID-19 economic shutdown and the future of flexible workplace practices in the South Bay region of Los Angeles County," Transport Policy, Elsevier, vol. 125(C), pages 241-255.
    15. Li, Zhaolong & Jin, Chun & Hu, Pan & Wang, Cong, 2019. "Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 503-514.
    16. Zavitsas, Konstantinos & Zis, Thalis & Bell, Michael G.H., 2018. "The impact of flexible environmental policy on maritime supply chain resilience," Transport Policy, Elsevier, vol. 72(C), pages 116-128.
    17. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    18. Wang, Jianxin & Lim, Ming K. & Zhan, Yuanzhu & Wang, XiaoFeng, 2020. "An intelligent logistics service system for enhancing dispatching operations in an IoT environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    19. Jing, Weiwei & Xu, Xiangdong & Pu, Yichao, 2020. "Route redundancy-based approach to identify the critical stations in metro networks: A mean-excess probability measure," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Liu, Qing & Yang, Yang & Ng, Adolf K.Y. & Jiang, Changmin, 2023. "An analysis on the resilience of the European port network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:106:y:2021:i:c:p:141-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.