IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4651-d793067.html
   My bibliography  Save this article

Optimal Model and Algorithm of Medical Materials Delivery Drone Routing Problem under Major Public Health Emergencies

Author

Listed:
  • Lijing Du

    (School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China)

  • Xiaohuan Li

    (School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China)

  • Yuan Gan

    (School of Economics and Finance, Guizhou University of Commerce, Guiyang 550014, China)

  • Kaijun Leng

    (Research Center of Hubei Logistics Development, Hubei University of Economics, Wuhan 430205, China)

Abstract

To reduce distribution risk and improve the efficiency of medical materials delivery under major public health emergencies, this paper introduces a drone routing problem with time windows. A mixed-integer programming model is formulated considering contactless delivery, total travel time, and customer service time windows. Utilizing Dantzig–Wolfe decomposition, the proposed optimization model is converted into a path-based master problem and a pricing subproblem based on an elementary shortest path problem with resource constraints. We embed the pulse algorithm into a column generation framework to solve the proposed model. The effectiveness of the model and algorithm is verified by addressing different scales of Solomon datasets. A case study on COVID-19 illustrates the application of the proposed model and algorithm in practice. We also perform a sensitivity analysis on the drone capacity that may affect the total distribution time. The experimental results enrich the research related to vehicle routing problem models and algorithms under major public health emergencies and provide optimized relief distribution solutions for decision-makers of emergency logistics.

Suggested Citation

  • Lijing Du & Xiaohuan Li & Yuan Gan & Kaijun Leng, 2022. "Optimal Model and Algorithm of Medical Materials Delivery Drone Routing Problem under Major Public Health Emergencies," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4651-:d:793067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4651/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4651/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leonardo Lozano & Daniel Duque & Andrés L. Medaglia, 2016. "An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints," Transportation Science, INFORMS, vol. 50(1), pages 348-357, February.
    2. Koshta, Nitin & Devi, Yashoda & Patra, Sabyasachi, 2021. "Aerial Bots in the Supply Chain: A New Ally to Combat COVID-19," Technology in Society, Elsevier, vol. 66(C).
    3. Joaquín Pacheco & Manuel Laguna, 2020. "Vehicle routing for the urgent delivery of face shields during the COVID-19 pandemic," Journal of Heuristics, Springer, vol. 26(5), pages 619-635, October.
    4. Zhi-Long Chen & Hang Xu, 2006. "Dynamic Column Generation for Dynamic Vehicle Routing with Time Windows," Transportation Science, INFORMS, vol. 40(1), pages 74-88, February.
    5. Yuzhan Wu & Yuanhao Ding & Susheng Ding & Yvon Savaria & Meng Li, 2021. "Autonomous Last-Mile Delivery Based on the Cooperation of Multiple Heterogeneous Unmanned Ground Vehicles," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, March.
    6. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2007. "An exact algorithm for a single-vehicle routing problem with time windows and multiple routes," European Journal of Operational Research, Elsevier, vol. 178(3), pages 755-766, May.
    7. Kunovjanek, Maximilian & Wankmüller, Christian, 2021. "Containing the COVID-19 pandemic with drones - Feasibility of a drone enabled back-up transport system," Transport Policy, Elsevier, vol. 106(C), pages 141-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuyu Wang & Xuefei Ge & Yan Li & Jingjing Zheng & Weichen Zheng, 2023. "Optimising the Distribution of Multi-Cycle Emergency Supplies after a Disaster," Sustainability, MDPI, vol. 15(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    2. You, Jintao & Wang, Yuan & Xue, Zhaojie, 2023. "An exact algorithm for the multi-trip container drayage problem with truck platooning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    3. Sébastien Mouthuy & Florence Massen & Yves Deville & Pascal Van Hentenryck, 2015. "A Multistage Very Large-Scale Neighborhood Search for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 49(2), pages 223-238, May.
    4. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    5. Hernandez, Florent & Feillet, Dominique & Giroudeau, Rodolphe & Naud, Olivier, 2016. "Branch-and-price algorithms for the solution of the multi-trip vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 249(2), pages 551-559.
    6. Han, Jialin & Zhang, Jiaxiang & Guo, Haoyue & Zhang, Ning, 2024. "Optimizing location-routing and demand allocation in the household waste collection system using a branch-and-price algorithm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 958-975.
    7. Tang, Jiafu & Yu, Yang & Li, Jia, 2015. "An exact algorithm for the multi-trip vehicle routing and scheduling problem of pickup and delivery of customers to the airport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 114-132.
    8. Rivera, Juan Carlos & Murat Afsar, H. & Prins, Christian, 2016. "Mathematical formulations and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 249(1), pages 93-104.
    9. Fagui Liu & Lvshengbiao Wang & Mengke Gui & Yang Zhang & Yulin Lan & Chengqi Lai & Boyuan Zhu, 2023. "A hybrid heuristic algorithm for urban distribution with simultaneous pickup-delivery and time window," Journal of Heuristics, Springer, vol. 29(2), pages 269-311, June.
    10. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    11. Gitae Kim, 2023. "Dynamic Vehicle Routing Problem with Fuzzy Customer Response," Sustainability, MDPI, vol. 15(5), pages 1-13, March.
    12. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2010. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles," European Journal of Operational Research, Elsevier, vol. 202(3), pages 756-763, May.
    13. Bo Sun & Ming Wei & Chunfeng Yang & Zhihuo Xu & Han Wang, 2018. "Personalised and Coordinated Demand-Responsive Feeder Transit Service Design: A Genetic Algorithms Approach," Future Internet, MDPI, vol. 10(7), pages 1-14, July.
    14. RuiYang Li & Ming He & HongYue He & QiaoYu Deng, 2022. "Heuristic column generation for designing an express circular packaging distribution network," Operational Research, Springer, vol. 22(2), pages 1103-1126, April.
    15. Dimitris Bertsimas & Patrick Jaillet, & Sébastien Martin, 2019. "Online Vehicle Routing: The Edge of Optimization in Large-Scale Applications," Operations Research, INFORMS, vol. 67(1), pages 143-162, January.
    16. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    17. Marlin W. Ulmer & Leonard Heilig & Stefan Voß, 2017. "On the Value and Challenge of Real-Time Information in Dynamic Dispatching of Service Vehicles," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 59(3), pages 161-171, June.
    18. Andrés Martínez-Reyes & Carlos L. Quintero-Araújo & Elyn L. Solano-Charris, 2021. "Supplying Personal Protective Equipment to Intensive Care Units during the COVID-19 Outbreak in Colombia. A Simheuristic Approach Based on the Location-Routing Problem," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    19. Benjamin Lev, 2009. "Book Reviews," Interfaces, INFORMS, vol. 39(4), pages 375-379, August.
    20. Bhusiri, Narath & Qureshi, Ali Gul & Taniguchi, Eiichi, 2014. "The trade-off between fixed vehicle costs and time-dependent arrival penalties in a routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4651-:d:793067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.