IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14473-d963028.html
   My bibliography  Save this article

Application of Unmanned Aerial Vehicles in Logistics: A Literature Review

Author

Listed:
  • Yi Li

    (Network Social Development Research Center, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    School of Economics and Management, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

  • Min Liu

    (School of Modern Posts, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

  • Dandan Jiang

    (School of Economics and Management, West Anhui University, Lu’an City 237012, China)

Abstract

The booming development of e-commerce has brought many challenges to the logistics industry. To ensure the sustainability of the logistics industry, the impact of environmental and social sustainability factors on logistics development needs to be considered. Unmanned Aerial Vehicles (UAVs)/drones are used in the logistics field because of their flexibility, low cost, environmental protection and energy-saving advantages, which can achieve both economic benefits and social benefits. This paper reviews 36 studies on UAVs applications in logistics from the Web of Science database from the past two years (2021–2022). The selected literature is classified into theoretical models (the traveling salesman problem and other path planning problems), application scenarios (medical safety applications and last-mile delivery problems) and other problems (UAV implementation obstacles, costs, pricing, etc.). Finally, future directions of UAVs are proposed, such as different application scenarios that can be considered and different algorithms that can be combined to optimize paths for UAVs to specific flight environments.

Suggested Citation

  • Yi Li & Min Liu & Dandan Jiang, 2022. "Application of Unmanned Aerial Vehicles in Logistics: A Literature Review," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14473-:d:963028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14473/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14473/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    2. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    3. Salama, Mohamed R. & Srinivas, Sharan, 2022. "Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    5. Michael Dienstknecht & Nils Boysen & Dirk Briskorn, 2022. "The traveling salesman problem with drone resupply," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1045-1086, December.
    6. Joonyup Eun & Byung Duk Song & Sangbok Lee & Dae-Eun Lim, 2019. "Mathematical Investigation on the Sustainability of UAV Logistics," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    7. Tamke, Felix & Buscher, Udo, 2021. "A branch-and-cut algorithm for the vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 174-203.
    8. Maria Elena Bruni & Sara Khodaparasti, 2022. "A Variable Neighborhood Descent Matheuristic for the Drone Routing Problem with Beehives Sharing," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    9. Puerto, Justo & Valverde, Carlos, 2022. "Routing for unmanned aerial vehicles: Touring dimensional sets," European Journal of Operational Research, Elsevier, vol. 298(1), pages 118-136.
    10. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    11. Grzegorz Radzki & Izabela Nielsen & Paulina Golińska-Dawson & Grzegorz Bocewicz & Zbigniew Banaszak, 2021. "Reactive UAV Fleet’s Mission Planning in Highly Dynamic and Unpredictable Environments," Sustainability, MDPI, vol. 13(9), pages 1-23, May.
    12. Li, Hongqi & Chen, Jun & Wang, Feilong & Bai, Ming, 2021. "Ground-vehicle and unmanned-aerial-vehicle routing problems from two-echelon scheme perspective: A review," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1078-1095.
    13. Luigi Di Puglia Pugliese & Francesca Guerriero & Maria Grazia Scutellá, 2021. "The Last-Mile Delivery Process with Trucks and Drones Under Uncertain Energy Consumption," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 31-67, October.
    14. Yaohan Shen & Xianhao Xu & Bipan Zou & Hongwei Wang, 2021. "Operating policies in multi-warehouse drone delivery systems," International Journal of Production Research, Taylor & Francis Journals, vol. 59(7), pages 2140-2156, April.
    15. Shan Li & Honghai Zhang & Zhuolun Li & Hao Liu, 2021. "An Air Route Network Planning Model of Logistics UAV Terminal Distribution in Urban Low Altitude Airspace," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    16. Campbell, James F. & Corberán, Ángel & Plana, Isaac & Sanchis, José M. & Segura, Paula, 2021. "Solving the length constrained K-drones rural postman problem," European Journal of Operational Research, Elsevier, vol. 292(1), pages 60-72.
    17. Dell’Amico, Mauro & Montemanni, Roberto & Novellani, Stefano, 2021. "Algorithms based on branch and bound for the flying sidekick traveling salesman problem," Omega, Elsevier, vol. 104(C).
    18. Kunovjanek, Maximilian & Wankmüller, Christian, 2021. "Containing the COVID-19 pandemic with drones - Feasibility of a drone enabled back-up transport system," Transport Policy, Elsevier, vol. 106(C), pages 141-152.
    19. Chen, Cheng & Demir, Emrah & Huang, Yuan, 2021. "An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1164-1180.
    20. Sergio Maria Patella & Gianluca Grazieschi & Valerio Gatta & Edoardo Marcucci & Stefano Carrese, 2020. "The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review," Sustainability, MDPI, vol. 13(1), pages 1-29, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao Zhang & Chun-Yan Xiao & Zhi-Guo Zhang, 2023. "Analysis and Empirical Study of Factors Influencing Urban Residents’ Acceptance of Routine Drone Deliveries," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    2. Pedro Gabriel Villani & Paulo Sergio Cugnasca, 2024. "A POMDP Approach to Map Victims in Disaster Scenarios," Logistics, MDPI, vol. 8(4), pages 1-25, November.
    3. Sandra Alvarez Gallo & Julien Maheut, 2023. "Multi-Criteria Analysis for the Evaluation of Urban Freight Logistics Solutions: A Systematic Literature Review," Mathematics, MDPI, vol. 11(19), pages 1-24, September.
    4. Snežana Tadić & Mladen Krstić & Miloš Veljović & Olja Čokorilo & Milica Milovanović, 2024. "Risk Analysis of the Use of Drones in City Logistics," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
    5. Maren Schnieder, 2024. "Visualising Carrier Consolidation and Alternative Delivery Locations: A Digital Model of Last-Mile Delivery in England and Wales," Logistics, MDPI, vol. 8(3), pages 1-14, August.
    6. Elena Zaitseva & Vitaly Levashenko & Ravil Mukhamediev & Nicolae Brinzei & Andriy Kovalenko & Adilkhan Symagulov, 2023. "Review of Reliability Assessment Methods of Drone Swarm (Fleet) and a New Importance Evaluation Based Method of Drone Swarm Structure Analysis," Mathematics, MDPI, vol. 11(11), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Xuan & Froger, Aurélien & Jabali, Ola & Liang, Gongqian, 2024. "A competitive heuristic algorithm for vehicle routing problems with drones," European Journal of Operational Research, Elsevier, vol. 318(2), pages 469-485.
    2. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    3. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    4. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    5. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2024. "Electric van-based robot deliveries with en-route charging," European Journal of Operational Research, Elsevier, vol. 317(3), pages 806-826.
    6. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.
    7. Yin, Yunqiang & Yang, Yongjian & Yu, Yugang & Wang, Dujuan & Cheng, T.C.E., 2023. "Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    8. Dukkanci, Okan & Campbell, James F. & Kara, Bahar Y., 2024. "Facility location decisions for drone delivery: A literature review," European Journal of Operational Research, Elsevier, vol. 316(2), pages 397-418.
    9. Zhang, Juan & Campbell, James F. & Sweeney, Donald C., 2024. "A continuous approximation approach to integrated truck and drone delivery systems," Omega, Elsevier, vol. 126(C).
    10. Heimfarth, Andreas & Ostermeier, Manuel & Hübner, Alexander, 2022. "A mixed truck and robot delivery approach for the daily supply of customers," European Journal of Operational Research, Elsevier, vol. 303(1), pages 401-421.
    11. Morandi, Nicola & Leus, Roel & Matuschke, Jannik & Yaman, Hande, 2023. "The traveling salesman problem with drones: The benefits of retraversing the arcs," Other publications TiSEM 09f54df0-875e-40af-a43d-5, Tilburg University, School of Economics and Management.
    12. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    13. Rave, Alexander & Fontaine, Pirmin & Kuhn, Heinrich, 2023. "Drone location and vehicle fleet planning with trucks and aerial drones," European Journal of Operational Research, Elsevier, vol. 308(1), pages 113-130.
    14. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    15. Zhao, Lei & Bi, Xinhua & Li, Gendao & Dong, Zhaohui & Xiao, Ni & Zhao, Anni, 2022. "Robust traveling salesman problem with multiple drones: Parcel delivery under uncertain navigation environments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    16. Senna, Fernando & Coelho, Leandro C. & Morabito, Reinaldo & Munari, Pedro, 2024. "An exact method for a last-mile delivery routing problem with multiple deliverymen," European Journal of Operational Research, Elsevier, vol. 317(2), pages 550-562.
    17. Ostermeier, Manuel & Heimfarth, Andreas & Hübner, Alexander, 2023. "The multi-vehicle truck-and-robot routing problem for last-mile delivery," European Journal of Operational Research, Elsevier, vol. 310(2), pages 680-697.
    18. Zandieh, Fatemeh & Ghannadpour, Seyed Farid & Mazdeh, Mohammad Mahdavi, 2024. "New integrated routing and surveillance model with drones and charging station considerations," European Journal of Operational Research, Elsevier, vol. 313(2), pages 527-547.
    19. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    20. Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14473-:d:963028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.