IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v180y2022ics0040162522001986.html
   My bibliography  Save this article

Future-proofing Klang Valley’s veins with REBET: A framework for directing transportation technologies towards infrastructure resilience

Author

Listed:
  • Ghazy, Shams
  • Tang, Yu Hoe
  • Mugumya, Kevin Luwemba
  • Wong, Jing Ying
  • Chan, Andy

Abstract

The transportation industry is in the midst of a revolution with technologies, such as shared vehicles, drones, and autonomous vehicles, that are poised to reshape the way we move. Yet, the multitude of technologies present a difficulty in prioritizing which technologies should be invested in. While focusing on Klang Valley’s transportation system, this research proposes the REsilience Brittleness and Emerging Technologies (REBET) framework, which aims to identify the transportation technologies with the highest potential of strengthening the system’s resilience. We used a Dephi technique to identify the Sources of Brittleness (SBs) in the system and technologies with the highest relevance to the Malaysian setting. Using multiple linear regression, we then derived a relationship between the two aspects. The framework defines the relative resilience of the technologies according to their forecasted ability to eliminate system brittleness. The results ranked 23 technologies, with the topmost recommendations being ITS, Big Data, and Smart Buses. We highlight REBET’s robustness as a global decision-making tool for infrastructure managers, researchers, and policymakers to identify ideal technologies for their transportation systems.

Suggested Citation

  • Ghazy, Shams & Tang, Yu Hoe & Mugumya, Kevin Luwemba & Wong, Jing Ying & Chan, Andy, 2022. "Future-proofing Klang Valley’s veins with REBET: A framework for directing transportation technologies towards infrastructure resilience," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:tefoso:v:180:y:2022:i:c:s0040162522001986
    DOI: 10.1016/j.techfore.2022.121666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522001986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Mojtahedi & Sidney Newton & Jason Meding, 2017. "Predicting the resilience of transport infrastructure to a natural disaster using Cox’s proportional hazards regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1119-1133, January.
    2. Zhang, X. & Miller-Hooks, E. & Denny, K., 2015. "Assessing the role of network topology in transportation network resilience," Journal of Transport Geography, Elsevier, vol. 46(C), pages 35-45.
    3. Junqing Tang & Hans Rudolf Heinimann, 2018. "A resilience-oriented approach for quantitatively assessing recurrent spatial-temporal congestion on urban roads," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.
    4. Markolf, Samuel A. & Hoehne, Christopher & Fraser, Andrew & Chester, Mikhail V. & Underwood, B. Shane, 2019. "Transportation resilience to climate change and extreme weather events – Beyond risk and robustness," Transport Policy, Elsevier, vol. 74(C), pages 174-186.
    5. B. Berche & C. von Ferber & T. Holovatch & Yu. Holovatch, 2009. "Resilience of public transport networks against attacks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(1), pages 125-137, September.
    6. Liimatainen, Heikki & Kallionpää, Erika & Pöllänen, Markus & Stenholm, Pekka & Tapio, Petri & McKinnon, Alan, 2014. "Decarbonizing road freight in the future — Detailed scenarios of the carbon emissions of Finnish road freight transport in 2030 using a Delphi method approach," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 177-191.
    7. Imran Yusoff & Boon-Kwee Ng & Suzana Ariff Azizan, 2021. "Towards sustainable transport policy framework: A rail-based transit system in Klang Valley, Malaysia," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-30, March.
    8. Lim, Steven & Lee, Keat Teong, 2012. "Implementation of biofuels in Malaysian transportation sector towards sustainable development: A case study of international cooperation between Malaysia and Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1790-1800.
    9. Rowe, Gene & Wright, George, 1999. "The Delphi technique as a forecasting tool: issues and analysis," International Journal of Forecasting, Elsevier, vol. 15(4), pages 353-375, October.
    10. Cox, Andrew & Prager, Fynnwin & Rose, Adam, 2011. "Transportation security and the role of resilience: A foundation for operational metrics," Transport Policy, Elsevier, vol. 18(2), pages 307-317, March.
    11. Rui Ding & Norsidah Ujang & Hussain bin Hamid & Jianjun Wu, 2015. "Complex Network Theory Applied to the Growth of Kuala Lumpur’s Public Urban Rail Transit Network," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    12. von der Gracht, Heiko A., 2012. "Consensus measurement in Delphi studies," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1525-1536.
    13. Schuckmann, Steffen W. & Gnatzy, Tobias & Darkow, Inga-Lena & von der Gracht, Heiko A., 2012. "Analysis of factors influencing the development of transport infrastructure until the year 2030 — A Delphi based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1373-1387.
    14. Labaka, Leire & Hernantes, Josune & Sarriegi, Jose M., 2016. "A holistic framework for building critical infrastructure resilience," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 21-33.
    15. Myungsik Do & Hoyong Jung, 2018. "Enhancing Road Network Resilience by Considering the Performance Loss and Asset Value," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    16. Hossain, Niamat Ullah Ibne & Jaradat, Raed & Hosseini, Seyedmohsen & Marufuzzaman, Mohammad & Buchanan, Randy K., 2019. "A framework for modeling and assessing system resilience using a Bayesian network: A case study of an interdependent electrical infrastructure system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 62-83.
    17. Melander, Lisa & Dubois, Anna & Hedvall, Klas & Lind, Frida, 2019. "Future goods transport in Sweden 2050: Using a Delphi-based scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 178-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. agarwal, shekhar & Gordon, Anna, 2022. "Complexities for the Indian Economy of China's Growing Technological Competence," OSF Preprints fk3r7, Center for Open Science.
    2. Dong, Kangyin & Ni, Guohua & Taghizadeh-Hesary, Farhad & Zhao, Congyu, 2023. "Does smart transportation matter in inhibiting carbon inequality?," Energy Economics, Elsevier, vol. 126(C).
    3. Kraus, Sascha & Kumar, Satish & Lim, Weng Marc & Kaur, Jaspreet & Sharma, Anuj & Schiavone, Francesco, 2023. "From moon landing to metaverse: Tracing the evolution of Technological Forecasting and Social Change," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    4. Ariza-Montes, Antonio & Quan, Wei & Radic, Aleksandar & Koo, Bonhak & Kim, Jinkyung Jenny & Chua, Bee-Lia & Han, Heesup, 2023. "Understanding the behavioral intention to use urban air autonomous vehicles," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    5. agarwal, shekhar, 2022. "India’s Rising Technology Economy: Sources and Consequences," OSF Preprints x6yzm, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    2. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Fritschy, Carolin & Spinler, Stefan, 2019. "The impact of autonomous trucks on business models in the automotive and logistics industry–a Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    4. Rahimi-Golkhandan, Armin & Garvin, Michael J. & Brown, Bryan L., 2019. "Characterizing and measuring transportation infrastructure diversity through linkages with ecological stability theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 114-130.
    5. Tobias Meyer & Heiko A. von der Gracht & Evi Hartmann, 2022. "Technology foresight for sustainable road freight transportation: Insights from a global real‐time Delphi study," Futures & Foresight Science, John Wiley & Sons, vol. 4(1), March.
    6. Yin, Kai & Wu, Jianjun & Wang, Weiping & Lee, Der-Horng & Wei, Yun, 2023. "An integrated resilience assessment model of urban transportation network: A case study of 40 cities in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    7. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    8. Shankar, Ravi & Pathak, Devendra Kumar & Choudhary, Devendra, 2019. "Decarbonizing freight transportation: An integrated EFA-TISM approach to model enablers of dedicated freight corridors," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 85-100.
    9. Peppel, Marcel & Ringbeck, Jürgen & Spinler, Stefan, 2022. "How will last-mile delivery be shaped in 2040? A Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    10. Liu, Qing & Yang, Yang & Ng, Adolf K.Y. & Jiang, Changmin, 2023. "An analysis on the resilience of the European port network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    11. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    12. Chen, Jinqu & Liu, Jie & Peng, Qiyuan & Yin, Yong, 2022. "Resilience assessment of an urban rail transit network: A case study of Chengdu subway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    13. Merfeld, Katrin & Wilhelms, Mark-Philipp & Henkel, Sven & Kreutzer, Karin, 2019. "Carsharing with shared autonomous vehicles: Uncovering drivers, barriers and future developments – A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 66-81.
    14. Kopyto, Matthias & Lechler, Sabrina & von der Gracht, Heiko A. & Hartmann, Evi, 2020. "Potentials of blockchain technology in supply chain management: Long-term judgments of an international expert panel," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    15. Tiberius, Victor & Gojowy, Robin & Dabić, Marina, 2022. "Forecasting the future of robo advisory: A three-stage Delphi study on economic, technological, and societal implications," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    16. Melander, Lisa & Dubois, Anna & Hedvall, Klas & Lind, Frida, 2019. "Future goods transport in Sweden 2050: Using a Delphi-based scenario analysis," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 178-189.
    17. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    18. Meissner, Philip & Brands, Christian & Wulf, Torsten, 2017. "Quantifiying blind spots and weak signals in executive judgment: A structured integration of expert judgment into the scenario development process," International Journal of Forecasting, Elsevier, vol. 33(1), pages 244-253.
    19. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.
    20. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:180:y:2022:i:c:s0040162522001986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.