IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i3d10.1007_s11069-017-2832-4.html
   My bibliography  Save this article

An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake

Author

Listed:
  • Mahmoud Golabi

    (Eastern Mediterranean University)

  • Seyed Mahdi Shavarani

    (Eastern Mediterranean University)

  • Gokhan Izbirak

    (Eastern Mediterranean University)

Abstract

The application of facility location problems in choosing the best location of relief distribution centers plays a salient role in emergency operations of large-scale disasters. On the premise that the service recipients are uniformly distributed along the network edges, this study investigates a combined mobile and immobile pre-earthquake facility location problem. A predefined number of locations are to be selected among a set of potential locations. Each facility is used in the relief distribution operation. It is incontrovertible that due to earthquakes, some network edges collapse and corresponding areas may lose their accessibility. Thus in this study, it is assumed that people on intact and accessible edges travel to the location of the distribution centers to receive the relief. For those who are located on collapsed or inaccessible network edges, the medium-scale unmanned aerial vehicle (UAV) helicopters are utilized in the relief distribution operation. This study aims to develop a mathematical model which minimizes the aggregate traveling time for both people and UAVs over a set of feasible scenarios. Since the network problems are NP-hard, some metaheuristic algorithms are developed to solve the proposed model. In order to demonstrate the applicability of developed model, a case study based on feasible earthquake scenarios in Tehran is presented.

Suggested Citation

  • Mahmoud Golabi & Seyed Mahdi Shavarani & Gokhan Izbirak, 2017. "An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1545-1565, July.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:3:d:10.1007_s11069-017-2832-4
    DOI: 10.1007/s11069-017-2832-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2832-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2832-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Arman Nedjati & Bela Vizvari & Gokhan Izbirak, 2016. "Post-earthquake response by small UAV helicopters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1669-1688, February.
    3. Ronald Eguchi, 2013. "We have come a long way, yet we still have far to go," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(1), pages 201-202, August.
    4. Boffey, Brian & Galvao, Roberto & Espejo, Luis, 2007. "A review of congestion models in the location of facilities with immobile servers," European Journal of Operational Research, Elsevier, vol. 178(3), pages 643-662, May.
    5. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    6. Jomon Aliyas Paul & Rajan Batta, 2008. "Models for hospital location and capacity allocation for an area prone to natural disasters," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 3(5), pages 473-496.
    7. Arman Nedjati & Bela Vizvari & Gokhan Izbirak, 2016. "Post-earthquake response by small UAV helicopters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1669-1688, February.
    8. Ulrich Kamp & Lewis Owen & Benjamin Growley & Ghazanfar Khattak, 2010. "Back analysis of landslide susceptibility zonation mapping for the 2005 Kashmir earthquake: an assessment of the reliability of susceptibility zoning maps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(1), pages 1-25, July.
    9. O Berman & Z Drezner, 2007. "The multiple server location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 91-99, January.
    10. Bieniek, Milena, 2015. "A note on the facility location problem with stochastic demands," Omega, Elsevier, vol. 55(C), pages 53-60.
    11. Osman Alp & Erhan Erkut & Zvi Drezner, 2003. "An Efficient Genetic Algorithm for the p-Median Problem," Annals of Operations Research, Springer, vol. 122(1), pages 21-42, September.
    12. Seyed Mousavi & Seyed Niaki & Esmaeil Mehdizadeh & Mohammad Tavarroth, 2013. "The capacitated multi-facility location–allocation problem with probabilistic customer location and demand: two hybrid meta-heuristic algorithms," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(10), pages 1897-1912.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malihe Niksirat & Mohsen Saffarian & Javad Tayyebi & Adrian Marius Deaconu & Delia Elena Spridon, 2024. "Fuzzy Multi-Objective, Multi-Period Integrated Routing–Scheduling Problem to Distribute Relief to Disaster Areas: A Hybrid Ant Colony Optimization Approach," Mathematics, MDPI, vol. 12(18), pages 1-17, September.
    2. Aditya Kamat & Saket Shanker & Akhilesh Barve & Kamalakanta Muduli & Sachin Kumar Mangla & Sunil Luthra, 2022. "Uncovering interrelationships between barriers to unmanned aerial vehicles in humanitarian logistics," Operations Management Research, Springer, vol. 15(3), pages 1134-1160, December.
    3. Dukkanci, Okan & Koberstein, Achim & Kara, Bahar Y., 2023. "Drones for relief logistics under uncertainty after an earthquake," European Journal of Operational Research, Elsevier, vol. 310(1), pages 117-132.
    4. Josip Marić & Carlos Galera-Zarco & Marco Opazo-Basáez, 2022. "The emergent role of digital technologies in the context of humanitarian supply chains: a systematic literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1003-1044, December.
    5. Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2019. "Uncertain multi-objective multi-commodity multi-period multi-vehicle location-allocation model for earthquake evacuation planning," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 105-132.
    6. Sean Grogan & Robert Pellerin & Michel Gamache, 2021. "Using tornado-related weather data to route unmanned aerial vehicles to locate damage and victims," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 905-939, December.
    7. İbrahim Miraç Eligüzel & Eren Özceylan & Gerhard-Wilhelm Weber, 2023. "Location-allocation analysis of humanitarian distribution plans: a case of United Nations Humanitarian Response Depots," Annals of Operations Research, Springer, vol. 324(1), pages 825-854, May.
    8. Shiva Ilkhanizadeh & Mahmoud Golabi & Siamand Hesami & Husam Rjoub, 2020. "The Potential Use of Drones for Tourism in Crises: A Facility Location Analysis Perspective," JRFM, MDPI, vol. 13(10), pages 1-13, October.
    9. Dukkanci, Okan & Campbell, James F. & Kara, Bahar Y., 2024. "Facility location decisions for drone delivery: A literature review," European Journal of Operational Research, Elsevier, vol. 316(2), pages 397-418.
    10. Kunovjanek, Maximilian & Wankmüller, Christian, 2021. "Containing the COVID-19 pandemic with drones - Feasibility of a drone enabled back-up transport system," Transport Policy, Elsevier, vol. 106(C), pages 141-152.
    11. Xinhui Ren & Ruibo Li, 2023. "The Location Problem of Medical Drone Vertiports for Emergency Cardiac Arrest Needs," Sustainability, MDPI, vol. 16(1), pages 1-22, December.
    12. Wang, Jianxin & Lim, Ming K. & Zhan, Yuanzhu & Wang, XiaoFeng, 2020. "An intelligent logistics service system for enhancing dispatching operations in an IoT environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    13. Béla Vizvári & Mahmoud Golabi & Arman Nedjati & Ferhat Gümüşbuğa & Gokhan Izbirak, 2019. "Top-down approach to design the relief system in a metropolitan city using UAV technology, part I: the first 48 h," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 571-597, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    2. Béla Vizvári & Mahmoud Golabi & Arman Nedjati & Ferhat Gümüşbuğa & Gokhan Izbirak, 2019. "Top-down approach to design the relief system in a metropolitan city using UAV technology, part I: the first 48 h," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 571-597, October.
    3. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    4. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    5. Jeong, Ho Young & Yu, David J. & Min, Byung-Cheol & Lee, Seokcheon, 2020. "The humanitarian flying warehouse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    6. Acar, Müge & Kaya, Onur, 2019. "A healthcare network design model with mobile hospitals for disaster preparedness: A case study for Istanbul earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 273-292.
    7. Sheu, Jiuh-Biing & Pan, Cheng, 2014. "A method for designing centralized emergency supply network to respond to large-scale natural disasters," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 284-305.
    8. Afshin Kamyabniya & M. M. Lotfi & Mohsen Naderpour & Yuehwern Yih, 2018. "Robust Platelet Logistics Planning in Disaster Relief Operations Under Uncertainty: a Coordinated Approach," Information Systems Frontiers, Springer, vol. 20(4), pages 759-782, August.
    9. Aakil M. Caunhye & Xiaofeng Nie, 2018. "A Stochastic Programming Model for Casualty Response Planning During Catastrophic Health Events," Transportation Science, INFORMS, vol. 52(2), pages 437-453, March.
    10. Qi, Mingyao & Yang, Ying & Cheng, Chun, 2023. "Location and inventory pre-positioning problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    11. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    12. Rodríguez-Espíndola, Oscar & Albores, Pavel & Brewster, Christopher, 2018. "Dynamic formulation for humanitarian response operations incorporating multiple organisations," International Journal of Production Economics, Elsevier, vol. 204(C), pages 83-98.
    13. Pouraliakbari-Mamaghani, Mahsa & Saif, Ahmed & Kamal, Noreen, 2023. "Reliable design of a congested disaster relief network: A two-stage stochastic-robust optimization approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    14. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2019. "Service system design for managing interruption risks: A backup-service risk-mitigation strategy," European Journal of Operational Research, Elsevier, vol. 274(2), pages 417-431.
    15. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    16. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    17. Shu, Jia & Lv, Wenya & Na, Qing, 2021. "Humanitarian relief supply network design: Expander graph based approach and a case study of 2013 Flood in Northeast China," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    18. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    19. Maass, Kayse Lee & Trapp, Andrew C. & Konrad, Renata, 2020. "Optimizing placement of residential shelters for human trafficking survivors," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    20. Caunhye, Aakil M. & Zhang, Yidong & Li, Mingzhe & Nie, Xiaofeng, 2016. "A location-routing model for prepositioning and distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 161-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:3:d:10.1007_s11069-017-2832-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.