IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v249y2024ics0951832024003041.html
   My bibliography  Save this article

Cascading failure modelling in global container shipping network using mass vessel trajectory data

Author

Listed:
  • Xu, Yang
  • Peng, Peng
  • Claramunt, Christophe
  • Lu, Feng
  • Yan, Ran

Abstract

Port plays a key role in maintaining traffic flows and the effectiveness of global maritime logistics. However, the vulnerability of the Global Container Shipping Network (GCSN) is likely to increase when a single port interruption entails failures in cascading when ports encounter situations like congestions, labor strikes or natural disasters. Such situations require the deployment of port protection measures and adjustments of shipping schedules. This paper introduces a cascading model, which employs extensive and worldwide vessel trajectory data to comprehensively analyze the occurrence of cascading failures within a GCSN. The principles behind the cascading failure model are that port failures are simulated and the maritime traffic is redistributed and equilibrated to other routes and ports. A Motter-Lai overload model is applied, complemented by a three-level balanced redistribution of the traffic flows according to the specific roles of the disrupted ports. Overall, this favors the analysis of the GCSN's vulnerability, reliability, potential risks, and possible impacts. It enables maritime authorities and decision-makers to optimize service routes and mitigate the GCSN's vulnerability.

Suggested Citation

  • Xu, Yang & Peng, Peng & Claramunt, Christophe & Lu, Feng & Yan, Ran, 2024. "Cascading failure modelling in global container shipping network using mass vessel trajectory data," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024003041
    DOI: 10.1016/j.ress.2024.110231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110231?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marc-Antoine Faure & Bárbara Polo Martin & Fabio Cremaschini & César Ducruet, 2024. "Shipping Trade and Geopolitical Turmoils: The Case of the Ukrainian Maritime Network," EconomiX Working Papers 2024-24, University of Paris Nanterre, EconomiX.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024003041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.