Author
Listed:
- Benjamin Schäfer
(Technical University of Dresden
Max Planck Institute for Dynamics and Self-Organization (MPIDS))
- Dirk Witthaut
(Institute for Energy and Climate Research - Systems Analysis and Technology Evaluation (IEK-STE)
University of Cologne)
- Marc Timme
(Technical University of Dresden
Max Planck Institute for Dynamics and Self-Organization (MPIDS))
- Vito Latora
(Queen Mary University of London
Università di Catania and INFN)
Abstract
Reliable functioning of infrastructure networks is essential for our modern society. Cascading failures are the cause of most large-scale network outages. Although cascading failures often exhibit dynamical transients, the modeling of cascades has so far mainly focused on the analysis of sequences of steady states. In this article, we focus on electrical transmission networks and introduce a framework that takes into account both the event-based nature of cascades and the essentials of the network dynamics. We find that transients of the order of seconds in the flows of a power grid play a crucial role in the emergence of collective behaviors. We finally propose a forecasting method to identify critical lines and components in advance or during operation. Overall, our work highlights the relevance of dynamically induced failures on the synchronization dynamics of national power grids of different European countries and provides methods to predict and model cascading failures.
Suggested Citation
Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018.
"Dynamically induced cascading failures in power grids,"
Nature Communications, Nature, vol. 9(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04287-5
DOI: 10.1038/s41467-018-04287-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04287-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.