IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v186y2024ics1366554524001340.html
   My bibliography  Save this article

Scrubber installation of inland container ships: Discrepancy between government and carriers

Author

Listed:
  • Zeng, Xianyang
  • Tan, Zhijia
  • Zhang, Ming
  • Wang, Tingsong

Abstract

Scrubbers are the commonly used green technologies for a ship to reduce sulfur emissions. Various speed adjustment behaviors would distort the cost and desulfurization efficiency of scrubbers for ships, which causes a discrepancy between the government and the carrier to install scrubbers. This paper addresses the issue by considering three speed adjustment behaviors: rigidity, partial flexibility, and full flexibility. Under rigid behavior, the carrier maintains a constant sailing speed when adopting low-sulfur fuel oil (LSFO) and installing a scrubber. Partially flexible behavior only involves speed adjustments when adopting LSFO, while fully flexible behavior includes speed adjustments when adopting LSFO and installing a scrubber. Our analysis indicates that scrubber installation consistently precedes adopting LSFO in speed. Full flexibility behavior is the least costly speed adjustment behavior, while partial flexibility behavior results in the lowest emissions. The investment discrepancy on scrubbers between the carrier and the government would occur on whether or not to install a scrubber and which level of the scrubber’s quality since the two parties are concerned about the sulfur emissions and cost, respectively. Government subsidies address these discrepancies, leading to improved emission reduction.

Suggested Citation

  • Zeng, Xianyang & Tan, Zhijia & Zhang, Ming & Wang, Tingsong, 2024. "Scrubber installation of inland container ships: Discrepancy between government and carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transe:v:186:y:2024:i:c:s1366554524001340
    DOI: 10.1016/j.tre.2024.103543
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524001340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103543?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhuge, Dan & Wang, Shuaian & Wang, David Z.W., 2021. "A joint liner ship path, speed and deployment problem under emission reduction measures," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 155-173.
    2. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    3. Zheng, Shiyuan & Wang, Kun & Fu, Xiaowen & Zhang, Anming & Ge, Ying-En, 2022. "The effects of information publicity and government subsidy on port climate change adaptation: Strategy and social welfare analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 284-312.
    4. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2020. "Ship’s response strategy to emission control areas: From the perspective of sailing pattern optimization and evasion strategy selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    5. Wang, Tingsong & Wang, Xinchang & Meng, Qiang, 2018. "Joint berth allocation and quay crane assignment under different carbon taxation policies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 18-36.
    6. Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    7. Zheng, Shiyuan & Wang, Kun & Li, Zhi-Chun & Fu, Xiaowen & Chan, Felix T.S., 2021. "Subsidy or minimum requirement? Regulation of port adaptation investment under disaster ambiguity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 457-481.
    8. Yu, Jingjing & Tang, Guolei & Voß, Stefan & Song, Xiangqun, 2023. "Berth allocation and quay crane assignment considering the adoption of different green technologies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 176(C).
    9. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    10. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    11. Lindstad, Elizabeth & Rehn, Carl Fredrik & Eskeland, Gunnar S., 2017. "Sulphur Abatement Globally in Maritime Shipping," Discussion Papers 2017/8, Norwegian School of Economics, Department of Business and Management Science.
    12. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    13. Fan, Lixian & Gu, Bingmei & Luo, Meifeng, 2020. "A cost-benefit analysis of fuel-switching vs. hybrid scrubber installation: A container route through the Chinese SECA case," Transport Policy, Elsevier, vol. 99(C), pages 336-344.
    14. Zhijia Tan & Yadong Wang & Qiang Meng & Zhixue Liu, 2018. "Joint Ship Schedule Design and Sailing Speed Optimization for a Single Inland Shipping Service with Uncertain Dam Transit Time," Service Science, INFORMS, vol. 52(6), pages 1570-1588, December.
    15. Reinhardt, Line Blander & Pisinger, David & Sigurd, Mikkel M. & Ahmt, Jonas, 2020. "Speed optimizations for liner networks with business constraints," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1127-1140.
    16. Du, Yuquan & Meng, Qiang & Wang, Shuaian & Kuang, Haibo, 2019. "Two-phase optimal solutions for ship speed and trim optimization over a voyage using voyage report data," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 88-114.
    17. Gu, Yewen & Wallace, Stein W., 2017. "Scrubber: a potentially overestimated compliance method for the Emission Control Areas - The importance of involving a ship's sailing pattern in the evaluation," Discussion Papers 2017/13, Norwegian School of Economics, Department of Business and Management Science.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    2. Zhang, Ming & Zeng, Xianyang & Tan, Zhijia, 2024. "Joint decision of green technology adoption and sailing pattern for a coastal ship under ECAs," Transport Policy, Elsevier, vol. 146(C), pages 102-113.
    3. Tan, Zhijia & Zhang, Ming & Shao, Shuai & Liang, Jinpeng & Sheng, Dian, 2022. "Evasion strategy for a coastal cargo ship with unpunctual arrival penalty under sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    4. Zhuge, Dan & Wang, Shuaian & Wang, David Z.W., 2021. "A joint liner ship path, speed and deployment problem under emission reduction measures," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 155-173.
    5. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    6. Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    7. Lee, Sang-Jeong & Sun, Qinghe & Meng, Qiang, 2023. "Vessel weather routing subject to sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    8. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    9. Yu, Jingjing & Tang, Guolei & Song, Xiangqun, 2022. "Collaboration of vessel speed optimization with berth allocation and quay crane assignment considering vessel service differentiation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    10. Liqian Yang & Gang Chen & Jinlou Zhao & Niels Gorm Malý Rytter, 2020. "Ship Speed Optimization Considering Ocean Currents to Enhance Environmental Sustainability in Maritime Shipping," Sustainability, MDPI, vol. 12(9), pages 1-24, May.
    11. Sun, Yulong & Zheng, Jianfeng & Yang, Lingxiao & Li, Xia, 2024. "Allocation and trading schemes of the maritime emissions trading system: Liner shipping route choice and carbon emissions," Transport Policy, Elsevier, vol. 148(C), pages 60-78.
    12. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    13. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    14. Xuecheng Tian & Ran Yan & Jingwen Qi & Dan Zhuge & Hans Wang, 2022. "A Bi-Level Programming Model for China’s Marine Domestic Emission Control Area Design," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    15. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2021. "Assessment and improvement of EPA's penalty policy: From the perspective of governments' and ships' behaviors," Transport Policy, Elsevier, vol. 104(C), pages 18-28.
    16. Haoqing Wang & Wen Yi & Yannick Liu, 2022. "Optimal Route Design for Construction Waste Transportation Systems: Mathematical Models and Solution Algorithms," Mathematics, MDPI, vol. 10(22), pages 1-13, November.
    17. Wen Yi & Robyn Phipps & Hans Wang, 2020. "Sustainable Ship Loading Planning for Prefabricated Products in the Construction Industry," Sustainability, MDPI, vol. 12(21), pages 1-12, October.
    18. Di Wu & Xuejun Ji & Fang Xiao & Shijie Sheng, 2022. "A Location Inventory Routing Optimisation Model and Algorithm for a Remote Island Shipping Network considering Emergency Inventory," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    19. Wang, Yadong & Gu, Yuyun & Wang, Tingsong & Zhang, Jun, 2022. "A risk-averse approach for joint contract selection and slot allocation in liner container shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Anna Lunde Hermansson & Ida-Maja Hassellöv & Tiia Grönholm & Jukka-Pekka Jalkanen & Erik Fridell & Rasmus Parsmo & Jesper Hassellöv & Erik Ytreberg, 2024. "Strong economic incentives of ship scrubbers promoting pollution," Nature Sustainability, Nature, vol. 7(6), pages 812-822, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:186:y:2024:i:c:s1366554524001340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.