IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v157y2024icp46-56.html
   My bibliography  Save this article

Ship deployment problem with green technology adoption for an inland river carrier under non-identical streamflow and speed limits

Author

Listed:
  • Shao, Shuai
  • Xu, Min
  • Tan, Zhijia
  • Zhen, Lu

Abstract

The maritime industry is currently experiencing a shift towards green corridors. The inland waterway is the main transportation corridor with a relatively low adoption of green technologies, which produces heavy air pollution in inland cities. This paper investigates the ship deployment problem for an inland river carrier considering the adoption of green fuel and green technologies for a given ship fleet. A non-linear programming (NLP) model is proposed to jointly optimize green technology adoption, sailing speed, and routing problems while considering two unique characteristics of inland river shipping, including the non-identical streamflow and the speed limits on each shipping leg. The analytical propositions reveal the optimal operation strategy of the inland river ship fleet, and a column generation-based algorithm is further designed to solve the proposed model. By jointly investigating the ship operation strategy and sulphur emissions, we find the following management insights: Firstly, the ship would have a lower willingness to invest in shore power (scrubber) if it installed scrubber (shore power). The higher streamflow and looser speed limits would reduce the spillover effect of green technology adoption. Secondly, emissions will spillover from ports to river legs if only shore power is provided. Our findings provide valuable insights for policymakers to promote complete green technology adoption to achieve comprehensive abatement of the entire inland river.

Suggested Citation

  • Shao, Shuai & Xu, Min & Tan, Zhijia & Zhen, Lu, 2024. "Ship deployment problem with green technology adoption for an inland river carrier under non-identical streamflow and speed limits," Transport Policy, Elsevier, vol. 157(C), pages 46-56.
  • Handle: RePEc:eee:trapol:v:157:y:2024:i:c:p:46-56
    DOI: 10.1016/j.tranpol.2024.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X24002269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2024.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhuge, Dan & Wang, Shuaian & Wang, David Z.W., 2021. "A joint liner ship path, speed and deployment problem under emission reduction measures," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 155-173.
    2. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2020. "Ship’s response strategy to emission control areas: From the perspective of sailing pattern optimization and evasion strategy selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    3. Shao, Shuai & Tan, Zhijia & Wang, Tingsong & Liu, Zhiyuan, 2023. "Configuration design of the emission control areas for coastal ships: A Stackelberg game model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    4. Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    5. Zhang, Ming & Zeng, Xianyang & Tan, Zhijia, 2024. "Joint decision of green technology adoption and sailing pattern for a coastal ship under ECAs," Transport Policy, Elsevier, vol. 146(C), pages 102-113.
    6. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    7. Wang, Jinggai & Zhong, Meisu & Wang, Tianni & Ge, Ying-En, 2023. "Identifying industry-related opinions on shore power from a survey in China," Transport Policy, Elsevier, vol. 134(C), pages 65-81.
    8. Peng, Ya-Ting & Wang, Yadong & Li, Zhi-Chun & Sheng, Dian, 2023. "Subsidy policy selection for shore power promotion: Subsidizing facility investment or price of shore power?," Transport Policy, Elsevier, vol. 140(C), pages 128-147.
    9. Tan, Zhijia & Zhang, Ming & Shao, Shuai & Liang, Jinpeng & Sheng, Dian, 2022. "Evasion strategy for a coastal cargo ship with unpunctual arrival penalty under sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    10. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    11. Fan, Lixian & Gu, Bingmei & Luo, Meifeng, 2020. "A cost-benefit analysis of fuel-switching vs. hybrid scrubber installation: A container route through the Chinese SECA case," Transport Policy, Elsevier, vol. 99(C), pages 336-344.
    12. Zhijia Tan & Yadong Wang & Qiang Meng & Zhixue Liu, 2018. "Joint Ship Schedule Design and Sailing Speed Optimization for a Single Inland Shipping Service with Uncertain Dam Transit Time," Service Science, INFORMS, vol. 52(6), pages 1570-1588, December.
    13. Sun, Yulong & Zheng, Jianfeng & Yang, Lingxiao & Li, Xia, 2024. "Allocation and trading schemes of the maritime emissions trading system: Liner shipping route choice and carbon emissions," Transport Policy, Elsevier, vol. 148(C), pages 60-78.
    14. Tichavska, Miluše & Tovar, Beatriz & Gritsenko, Daria & Johansson, Lasse & Jalkanen, Jukka Pekka, 2019. "Air emissions from ships in port: Does regulation make a difference?," Transport Policy, Elsevier, vol. 75(C), pages 128-140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ming & Zeng, Xianyang & Tan, Zhijia, 2024. "Joint decision of green technology adoption and sailing pattern for a coastal ship under ECAs," Transport Policy, Elsevier, vol. 146(C), pages 102-113.
    2. Zeng, Xianyang & Tan, Zhijia & Zhang, Ming & Wang, Tingsong, 2024. "Scrubber installation of inland container ships: Discrepancy between government and carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    3. Tan, Zhijia & Zeng, Xianyang & Shao, Shuai & Chen, Jihong & Wang, Hua, 2022. "Scrubber installation and green fuel for inland river ships with non-identical streamflow," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    4. Li, De-Chang & Yang, Hua-Long, 2024. "Voyage charterparty arrangement for river tramp shipping: Green and traditional vessels comparison," Transport Policy, Elsevier, vol. 158(C), pages 75-92.
    5. Tan, Zhijia & Zhang, Ming & Shao, Shuai & Liang, Jinpeng & Sheng, Dian, 2022. "Evasion strategy for a coastal cargo ship with unpunctual arrival penalty under sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    6. Zhuge, Dan & Wang, Shuaian & Wang, David Z.W., 2021. "A joint liner ship path, speed and deployment problem under emission reduction measures," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 155-173.
    7. Wang, Jinggai & Li, Huanhuan & Yang, Zaili & Ge, Ying-En, 2024. "Shore power for reduction of shipping emission in port: A bibliometric analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    8. Tan, Zhijia & Shao, Shuai & Zhang, Di & Shang, Wen-Long & Ochieng, Washington & Han, Yi, 2024. "Decarbonizing the inland container fleet with carbon cap-and-trade scheme," Applied Energy, Elsevier, vol. 376(PB).
    9. Shao, Shuai & Tan, Zhijia & Wang, Tingsong & Liu, Zhiyuan, 2023. "Configuration design of the emission control areas for coastal ships: A Stackelberg game model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    10. Wang, Yadong & Wang, Shuaian, 2021. "Deploying, scheduling, and sequencing heterogeneous vessels in a liner container shipping route," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    11. Lee, Sang-Jeong & Sun, Qinghe & Meng, Qiang, 2023. "Vessel weather routing subject to sulfur emission regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    12. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    13. Li, Lingyue & Gao, Suixiang & Yang, Wenguo & Xiong, Xing, 2021. "Assessment and improvement of EPA's penalty policy: From the perspective of governments' and ships' behaviors," Transport Policy, Elsevier, vol. 104(C), pages 18-28.
    14. Yu, Jingjing & Tang, Guolei & Song, Xiangqun, 2022. "Collaboration of vessel speed optimization with berth allocation and quay crane assignment considering vessel service differentiation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    15. Wu, Jie & Liu, Jiaguo & Li, Na, 2024. "The evasion strategy options for competitive ocean carriers under the EU ETS," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    16. Sheng, Dian & Wang, YiYao & Wang, Hua & Liu, Baoli & Tang, Tianpei, 2024. "Enforcement of the global sulphur cap: Can self-reporting provide a better solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    17. Sun, Yulong & Zheng, Jianfeng & Yang, Lingxiao & Li, Xia, 2024. "Allocation and trading schemes of the maritime emissions trading system: Liner shipping route choice and carbon emissions," Transport Policy, Elsevier, vol. 148(C), pages 60-78.
    18. Zhen, Lu & Zhang, Shuanglu & Zhuge, Dan & Wang, Shuaian & Wang, Yong, 2024. "An emission control policymaking model for sustainable river transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    19. Wang, Yadong & Gu, Yuyun & Wang, Tingsong & Zhang, Jun, 2022. "A risk-averse approach for joint contract selection and slot allocation in liner container shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Lingyue Li & Suixiang Gao & Wenguo Yang, 2022. "The enforcement of ECA regulations: inspection strategy for on-board fuel sampling," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2551-2576, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:157:y:2024:i:c:p:46-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.