Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nam, Doohee & Mannering, Fred, 2000. "An exploratory hazard-based analysis of highway incident duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(2), pages 85-102, February.
- U. Brännlund & P. O. Lindberg & A. Nõu & J.-E. Nilsson, 1998. "Railway Timetabling Using Lagrangian Relaxation," Transportation Science, INFORMS, vol. 32(4), pages 358-369, November.
- Corman, Francesco & D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2010. "A tabu search algorithm for rerouting trains during rail operations," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 175-192, January.
- Michael Schachtebeck & Anita Schöbel, 2010. "To Wait or Not to Wait---And Who Goes First? Delay Management with Priority Decisions," Transportation Science, INFORMS, vol. 44(3), pages 307-321, August.
- Andrea D’Ariano & Marco Pranzo, 2009. "An Advanced Real-Time Train Dispatching System for Minimizing the Propagation of Delays in a Dispatching Area Under Severe Disturbances," Networks and Spatial Economics, Springer, vol. 9(1), pages 63-84, March.
- Xiaoqiang Cai & Xian Zhou, 2000. "Asymmetric Earliness and Tardiness Scheduling with Exponential Processing Times on an Unreliable Machine," Annals of Operations Research, Springer, vol. 98(1), pages 313-331, December.
- Jovanovic, Dejan & Harker, Patrick T., 1990. "A Decision Support System for Train Dispatching: An Optimization-Based Methodology," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 31(1).
- D'Ariano, Andrea & Pacciarelli, Dario & Pranzo, Marco, 2007. "A branch and bound algorithm for scheduling trains in a railway network," European Journal of Operational Research, Elsevier, vol. 183(2), pages 643-657, December.
- Zvi Artstein & Roger J-B. Wets, 1993. "Sensors and Information in Optimization Under Stochastic Uncertainty," Mathematics of Operations Research, INFORMS, vol. 18(3), pages 523-547, August.
- Bintong Chen & Patrick T. Harker, 1990. "Two Moments Estimation of the Delay on Single-Track Rail Lines with Scheduled Traffic," Transportation Science, INFORMS, vol. 24(4), pages 261-275, November.
- Vromans, Michiel J.C.M. & Dekker, Rommert & Kroon, Leo G., 2006.
"Reliability and heterogeneity of railway services,"
European Journal of Operational Research, Elsevier, vol. 172(2), pages 647-665, July.
- Vromans, M.J.C.M. & Dekker, R. & Kroon, L.G., 2003. "Reliability and heterogeneity of railway services," ERIM Report Series Research in Management ERS-2003-090-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Zhou, Xuesong & Zhong, Ming, 2007. "Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 320-341, March.
- Carey, Malachy, 1994. "A model and strategy for train pathing with choice of lines, platforms, and routes," Transportation Research Part B: Methodological, Elsevier, vol. 28(5), pages 333-353, October.
- Törnquist, Johanna & Persson, Jan A., 2007. "N-tracked railway traffic re-scheduling during disturbances," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 342-362, March.
- Kraay, David R. & Harker, Patrick T., 1995. "Real-time scheduling of freight railroads," Transportation Research Part B: Methodological, Elsevier, vol. 29(3), pages 213-229, June.
- Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
- Dorfman, M. J. & Medanic, J., 2004. "Scheduling trains on a railway network using a discrete event model of railway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 38(1), pages 81-98, January.
- Dejan Jovanović & Patrick T. Harker, 1991. "Tactical Scheduling of Rail Operations: The SCAN I System," Transportation Science, INFORMS, vol. 25(1), pages 46-64, February.
- Carey, Malachy, 1998. "Optimizing scheduled times, allowing for behavioural response," Transportation Research Part B: Methodological, Elsevier, vol. 32(5), pages 329-342, June.
- Steven Harrod, 2011. "Modeling Network Transition Constraints with Hypergraphs," Transportation Science, INFORMS, vol. 45(1), pages 81-97, February.
- Carey, Malachy & Kwiecinski, Andrzej, 1994. "Stochastic approximation to the effects of headways on knock-on delays of trains," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 251-267, August.
- John Mittenthal & M. Raghavachari, 1993. "Stochastic Single Machine Scheduling with Quadratic Early-Tardy Penalties," Operations Research, INFORMS, vol. 41(4), pages 786-796, August.
- Zhou, Xuesong & Zhong, Ming, 2005. "Bicriteria train scheduling for high-speed passenger railroad planning applications," European Journal of Operational Research, Elsevier, vol. 167(3), pages 752-771, December.
- Carey, Malachy, 1994. "Extending a train pathing model from one-way to two-way track," Transportation Research Part B: Methodological, Elsevier, vol. 28(5), pages 395-400, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Meng, Lingyun & Zhou, Xuesong, 2014. "Simultaneous train rerouting and rescheduling on an N-track network: A model reformulation with network-based cumulative flow variables," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 208-234.
- Zhou, Xuesong & Zhong, Ming, 2007. "Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds," Transportation Research Part B: Methodological, Elsevier, vol. 41(3), pages 320-341, March.
- Li, Feng & Sheu, Jiuh-Biing & Gao, Zi-You, 2014. "Deadlock analysis, prevention and train optimal travel mechanism in single-track railway system," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 385-414.
- Talebian, Ahmadreza & Zou, Bo, 2015. "Integrated modeling of high performance passenger and freight train planning on shared-use corridors in the US," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 114-140.
- Min, Yun-Hong & Park, Myoung-Ju & Hong, Sung-Pil & Hong, Soon-Heum, 2011. "An appraisal of a column-generation-based algorithm for centralized train-conflict resolution on a metropolitan railway network," Transportation Research Part B: Methodological, Elsevier, vol. 45(2), pages 409-429, February.
- Mu, Shi & Dessouky, Maged, 2011. "Scheduling freight trains traveling on complex networks," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1103-1123, August.
- Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
- Julia Lange & Frank Werner, 2018. "Approaches to modeling train scheduling problems as job-shop problems with blocking constraints," Journal of Scheduling, Springer, vol. 21(2), pages 191-207, April.
- Sato, Keisuke & Fukumura, Naoto, 2012. "Real-time freight locomotive rescheduling and uncovered train detection during disruption," European Journal of Operational Research, Elsevier, vol. 221(3), pages 636-648.
- Zhang, Chuntian & Gao, Yuan & Yang, Lixing & Gao, Ziyou & Qi, Jianguo, 2020. "Joint optimization of train scheduling and maintenance planning in a railway network: A heuristic algorithm using Lagrangian relaxation," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 64-92.
- Lee, Yusin & Chen, Chuen-Yih, 2009. "A heuristic for the train pathing and timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 837-851, September.
- Zhan, Shuguang & Kroon, Leo G. & Veelenturf, Lucas P. & Wagenaar, Joris C., 2015. "Real-time high-speed train rescheduling in case of a complete blockage," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 182-201.
- Zhou, Leishan & Tong, Lu (Carol) & Chen, Junhua & Tang, Jinjin & Zhou, Xuesong, 2017. "Joint optimization of high-speed train timetables and speed profiles: A unified modeling approach using space-time-speed grid networks," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 157-181.
- Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
- Bettinelli, Andrea & Santini, Alberto & Vigo, Daniele, 2017. "A real-time conflict solution algorithm for the train rescheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 237-265.
- Corman, F. & D’Ariano, A. & Pacciarelli, D. & Pranzo, M., 2012. "Optimal inter-area coordination of train rescheduling decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 71-88.
- Zhou, Wenliang & Teng, Hualiang, 2016. "Simultaneous passenger train routing and timetabling using an efficient train-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 409-439.
- Gao, Yuan & Kroon, Leo & Schmidt, Marie & Yang, Lixing, 2016. "Rescheduling a metro line in an over-crowded situation after disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 425-449.
- Li, Feng & Gao, Ziyou & Li, Keping & Yang, Lixing, 2008. "Efficient scheduling of railway traffic based on global information of train," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 1008-1030, December.
- Xiaoming Xu & Keping Li & Lixing Yang & Ziyou Gao, 2019. "An efficient train scheduling algorithm on a single-track railway system," Journal of Scheduling, Springer, vol. 22(1), pages 85-105, February.
More about this item
Keywords
Train dispatching Disruption handling Rolling horizon decision making Stochastic optimization;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:7:p:1080-1102. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.