IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v50y2016i3p892-909.html
   My bibliography  Save this article

Mixed-Integer Programming for Railway Capacity Analysis and Cyclic, Combined Train Timetabling and Platforming

Author

Listed:
  • Matthew E. H. Petering

    (Department of Industrial and Manufacturing Engineering, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin 53201)

  • Mojtaba Heydar

    (School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW 2308, Australia)

  • Dietrich R. Bergmann

    (Railway Systems Engineering, Ann Arbor, Michigan 48113)

Abstract

We present the literature’s first mixed-integer linear programming model of a cyclic, combined train timetabling and platforming problem. The model’s objectives are to minimize (1) the cycle length and (2) the total journey time of all trains dispatched during one cycle. The model falls outside the framework of the well-known periodic event scheduling problem and explicitly considers the minimization of cycle length using linear constraints and a linear objective function. We define the model, propose methods for obtaining bounds on the optimal objective value, and describe preprocessing techniques for reducing the number of variables and constraints. Numerous life-size problem instances are solved to optimality using IBM ILOG CPLEX. Results show the model’s effectiveness in pursuing objectives 1 and 2, the benefits of deciding the cyclic train order versus assuming a given order, and the model’s ability to calculate railway capacity without bias.

Suggested Citation

  • Matthew E. H. Petering & Mojtaba Heydar & Dietrich R. Bergmann, 2016. "Mixed-Integer Programming for Railway Capacity Analysis and Cyclic, Combined Train Timetabling and Platforming," Transportation Science, INFORMS, vol. 50(3), pages 892-909, August.
  • Handle: RePEc:inm:ortrsc:v:50:y:2016:i:3:p:892-909
    DOI: 10.1287/trsc.2015.0652
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2015.0652
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2015.0652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carey, Malachy & Crawford, Ivan, 2007. "Scheduling trains on a network of busy complex stations," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 159-178, February.
    2. Harrod, Steven, 2009. "Capacity factors of a mixed speed railway network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 830-841, September.
    3. Goverde, Rob M.P., 2007. "Railway timetable stability analysis using max-plus system theory," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 179-201, February.
    4. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    5. Alain Billionnet, 2003. "Using Integer Programming to Solve the Train-Platforming Problem," Transportation Science, INFORMS, vol. 37(2), pages 213-222, May.
    6. Lee, Yusin & Chen, Chuen-Yih, 2009. "A heuristic for the train pathing and timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 837-851, September.
    7. Christian Liebchen, 2008. "The First Optimized Railway Timetable in Practice," Transportation Science, INFORMS, vol. 42(4), pages 420-435, November.
    8. Jean-François Cordeau & Paolo Toth & Daniele Vigo, 1998. "A Survey of Optimization Models for Train Routing and Scheduling," Transportation Science, INFORMS, vol. 32(4), pages 380-404, November.
    9. Burdett, R.L. & Kozan, E., 2006. "Techniques for absolute capacity determination in railways," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 616-632, September.
    10. Ghoseiri, Keivan & Szidarovszky, Ferenc & Asgharpour, Mohammad Jawad, 2004. "A multi-objective train scheduling model and solution," Transportation Research Part B: Methodological, Elsevier, vol. 38(10), pages 927-952, December.
    11. Leo G. Kroon & Leon W. P. Peeters, 2003. "A Variable Trip Time Model for Cyclic Railway Timetabling," Transportation Science, INFORMS, vol. 37(2), pages 198-212, May.
    12. Carey, Malachy, 1994. "A model and strategy for train pathing with choice of lines, platforms, and routes," Transportation Research Part B: Methodological, Elsevier, vol. 28(5), pages 333-353, October.
    13. Morten N. Nielsen & Bjorn Hove & Jens Clausen, 2006. "Constructing periodic timetables using MIP - a case study from DSB S-train," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 1(3), pages 213-227.
    14. Peter J. Zwaneveld & Leo G. Kroon & H. Edwin Romeijn & Marc Salomon & Stéphane Dauzère-Pérès & Stan P. M. Van Hoesel & Harrie W. Ambergen, 1996. "Routing Trains Through Railway Stations: Model Formulation and Algorithms," Transportation Science, INFORMS, vol. 30(3), pages 181-194, August.
    15. Chakroborty, Partha & Vikram, Durgesh, 2008. "Optimum assignment of trains to platforms under partial schedule compliance," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 169-184, February.
    16. Odijk, Michiel A., 1996. "A constraint generation algorithm for the construction of periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 455-464, December.
    17. Abril, M. & Barber, F. & Ingolotti, L. & Salido, M.A. & Tormos, P. & Lova, A., 2008. "An assessment of railway capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 774-806, September.
    18. Carey, Malachy & Carville, Sinead, 2003. "Scheduling and platforming trains at busy complex stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 195-224, March.
    19. Thomas Lindner & Uwe Zimmermann, 2005. "Cost optimal periodic train scheduling," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(2), pages 281-295, November.
    20. Chung, Ji-Won & Oh, Seog-Moon & Choi, In-Chan, 2009. "A hybrid genetic algorithm for train sequencing in the Korean railway," Omega, Elsevier, vol. 37(3), pages 555-565, June.
    21. Alberto Caprara & Laura Galli & Paolo Toth, 2011. "Solution of the Train Platforming Problem," Transportation Science, INFORMS, vol. 45(2), pages 246-257, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
    2. Ruxin Wang & Lei Nie & Yuyan Tan, 2020. "Evaluating Line Capacity with an Analytical UIC Code 406 Compression Method and Blocking Time Stairway," Energies, MDPI, vol. 13(7), pages 1-16, April.
    3. Zhou, Wenliang & Tian, Junli & Xue, Lijuan & Jiang, Min & Deng, Lianbo & Qin, Jin, 2017. "Multi-periodic train timetabling using a period-type-based Lagrangian relaxation decomposition," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 144-173.
    4. Lu Yang & Leishan Zhou & Hanxiao Zhou & Chang Han & Wenqiang Zhao, 2023. "A Lagrangian Method for Calculation of Passing Capacity on a Railway Hub Station," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    5. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2021. "Train timetabling with stop-skipping, passenger flow, and platform choice considerations," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 52-74.
    6. Zeyu Wang & Leishan Zhou & Bin Guo & Xing Chen & Hanxiao Zhou, 2021. "An Efficient Hybrid Approach for Scheduling the Train Timetable for the Longer Distance High-Speed Railway," Sustainability, MDPI, vol. 13(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Gongyuan & Ning, Jia & Liu, Xiaobo & Nie, Yu (Marco), 2022. "Train platforming and rescheduling with flexible interlocking mechanisms: An aggregate approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    2. Burdett, R.L. & Kozan, E., 2010. "A disjunctive graph model and framework for constructing new train schedules," European Journal of Operational Research, Elsevier, vol. 200(1), pages 85-98, January.
    3. Sels, P. & Vansteenwegen, P. & Dewilde, T. & Cattrysse, D. & Waquet, B. & Joubert, A., 2014. "The train platforming problem: The infrastructure management company perspective," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 55-72.
    4. Lu, Gongyuan & Nie, Yu(Marco) & Liu, Xiaobo & Li, Denghui, 2019. "Trajectory-based traffic management inside an autonomous vehicle zone," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 76-98.
    5. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    6. Yidong Wang & Rui Song & Shiwei He & Zilong Song, 2022. "Train Routing and Track Allocation Optimization Model of Multi-Station High-Speed Railway Hub," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    7. Cacchiani, Valentina & Furini, Fabio & Kidd, Martin Philip, 2016. "Approaches to a real-world Train Timetabling Problem in a railway node," Omega, Elsevier, vol. 58(C), pages 97-110.
    8. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    9. Jingliu Xu & Zhimei Wang & Shangjun Yao & Jiarong Xue, 2022. "Train Operations Organization in High-Speed Railway Station Considering Variable Configuration," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    10. Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
    11. Wenliang Zhou & Junli Tian & Jin Qin & Lianbo Deng & TangJian Wei, 2015. "Optimization of Multiperiod Mixed Train Schedule on High-Speed Railway," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-14, April.
    12. Sels, P. & Dewilde, T. & Cattrysse, D. & Vansteenwegen, P., 2016. "Reducing the passenger travel time in practice by the automated construction of a robust railway timetable," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 124-156.
    13. Talebian, Ahmadreza & Zou, Bo, 2015. "Integrated modeling of high performance passenger and freight train planning on shared-use corridors in the US," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 114-140.
    14. E. Ursavas & Stuart X. Zhu, 2018. "Integrated Passenger and Freight Train Planning on Shared-Use Corridors," Service Science, INFORMS, vol. 52(6), pages 1376-1390, December.
    15. Carey, Malachy & Crawford, Ivan, 2007. "Scheduling trains on a network of busy complex stations," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 159-178, February.
    16. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
    17. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    18. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2021. "Train timetabling with stop-skipping, passenger flow, and platform choice considerations," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 52-74.
    19. Burdett, R.L. & Kozan, E., 2009. "Techniques for inserting additional trains into existing timetables," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 821-836, September.
    20. Martin Josef Geiger & Sandra Huber & Sebastian Langton & Marius Leschik & Christian Lindorf & Ulrich Tüshaus, 2018. "Multi-attribute assignment of trains to departures in rolling stock management," Annals of Operations Research, Springer, vol. 271(2), pages 1131-1163, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:50:y:2016:i:3:p:892-909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.