IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v142y2020icp1-18.html
   My bibliography  Save this article

Strategies for transit fleet design considering peak and off-peak periods using the single-line model

Author

Listed:
  • Jara-Díaz, Sergio
  • Fielbaum, Andrés
  • Gschwender, Antonio

Abstract

Transit demand and traffic conditions present relevant differences between peak and off-peak periods - e.g. flows, trip lengths, congestion - raising a relevant strategic design choice regarding the potential use of vehicles with different sizes. Here we first revisit the optimal design using a single-line, single-fleet model, showing that buses should always run full at the peak but not always at the off-peak. Then we develop a two-fleet strategy (with different vehicle sizes) where one fleet operates the whole day and the other during the peak period only. This strategy includes holding during the peak (in order to avoid bunching) by imposing equal cycle times for both fleets. The two-fleet operation has slightly lower total costs than one-fleet, but exhibits very different effects on users’ and on operators’ costs across periods. A sensitivity analysis reveals the role played by various elements and shows that results are robust. Optimal one and two-fleet designs are both better than optimizing each period independently, revealing economies of time scope.

Suggested Citation

  • Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
  • Handle: RePEc:eee:transb:v:142:y:2020:i:c:p:1-18
    DOI: 10.1016/j.trb.2020.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261520304045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2020.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    2. Ian W. H. Parry & Kenneth A. Small, 2009. "Should Urban Transit Subsidies Be Reduced?," American Economic Review, American Economic Association, vol. 99(3), pages 700-724, June.
    3. Leonardo J. Basso & Hugo E. Silva, 2014. "Efficiency and Substitutability of Transit Subsidies and Other Urban Transport Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 1-33, November.
    4. Glaister, Stephen & Lewis, Davis, 1978. "An integrated fares policy for transport in London," Journal of Public Economics, Elsevier, vol. 9(3), pages 341-355, June.
    5. Sergio Jara-Díaz & Alejandro Tirachini, 2013. "Urban Bus Transport: Open All Doors for Boarding," Journal of Transport Economics and Policy, University of Bath, vol. 47(1), pages 91-106, January.
    6. Oldfield, R. H. & Bly, P. H., 1988. "An analytic investigation of optimal bus size," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 319-337, October.
    7. Beirão, Gabriela & Sarsfield Cabral, J.A., 2007. "Understanding attitudes towards public transport and private car: A qualitative study," Transport Policy, Elsevier, vol. 14(6), pages 478-489, November.
    8. Fernández L., J. Enrique & de Cea Ch., Joaqui­n & de Grange C., Louis, 2005. "Production costs, congestion, scope and scale economies in urban bus transportation corridors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 383-403, June.
    9. G. F. Newell, 1974. "Control of Pairing of Vehicles on a Public Transportation Route, Two Vehicles, One Control Point," Transportation Science, INFORMS, vol. 8(3), pages 248-264, August.
    10. Proost, Stef & Dender, Kurt Van, 2008. "Optimal urban transport pricing in the presence of congestion, economies of density and costly public funds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(9), pages 1220-1230, November.
    11. Ralf Borndörfer & Martin Grötschel & Marc E. Pfetsch, 2007. "A Column-Generation Approach to Line Planning in Public Transport," Transportation Science, INFORMS, vol. 41(1), pages 123-132, February.
    12. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2017. "Optimal fleet size, frequencies and vehicle capacities considering peak and off-peak periods in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 65-74.
    13. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    14. Sergio Jara-Díaz & Antonio Gschwender, 2009. "The effect of financial constraints on the optimal design of public transport services," Transportation, Springer, vol. 36(1), pages 65-75, January.
    15. Redman, Lauren & Friman, Margareta & Gärling, Tommy & Hartig, Terry, 2013. "Quality attributes of public transport that attract car users: A research review," Transport Policy, Elsevier, vol. 25(C), pages 119-127.
    16. E. E. Osuna & G. F. Newell, 1972. "Control Strategies for an Idealized Public Transportation System," Transportation Science, INFORMS, vol. 6(1), pages 52-72, February.
    17. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Comparing operator and users costs of light rail, heavy rail and bus rapid transit over a radial public transport network," Research in Transportation Economics, Elsevier, vol. 29(1), pages 231-242.
    18. Shyue Koong Chang & Schonfeld, Paul M., 1991. "Multiple period optimization of bus transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 453-478, December.
    19. Daganzo, Carlos F., 2009. "A headway-based approach to eliminate bus bunching: Systematic analysis and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 913-921, December.
    20. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    2. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    3. Ramos, Raúl & Silva, Hugo E., 2023. "Fare evasion in public transport: How does it affect the optimal design and pricing?," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    4. Wang, Bangjuan & Liu, Chengliang & Zhang, Hong, 2022. "Where are equity and service effectiveness? A tale from public transport in Shanghai," Journal of Transport Geography, Elsevier, vol. 98(C).
    5. Johari, Mansour & Keyvan-Ekbatani, Mehdi, 2024. "Macroscopic modeling of mixed bi-modal urban networks: A hybrid model of accumulation- and trip-based principles," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    6. Jara-Díaz, Sergio R. & Muñoz-Paulsen, Esteban, 2022. "Lessons from the strategic design of a bimodal public transport system on a linear city," Research in Transportation Economics, Elsevier, vol. 94(C).
    7. Guo, Qianwen & Sun, Yanshuo & Schonfeld, Paul & Li, Zhongfei, 2021. "Time-dependent transit fare optimization with elastic and spatially distributed demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 353-378.
    8. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    9. Fielbaum, Andres, 2024. "On the relationship between free public transport, stop spacing, and optimal frequencies," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    10. Høyem, Harald, 2022. "Public transport frequency and risk-taking behavior," Economics of Transportation, Elsevier, vol. 30(C).
    11. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    3. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    4. Fielbaum, Andres, 2024. "On the relationship between free public transport, stop spacing, and optimal frequencies," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    5. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    6. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    7. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    8. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    9. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.
    10. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    11. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    12. Sun, Yanshuo & Guo, Qianwen & Schonfeld, Paul & Li, Zhongfei, 2016. "Implications of the cost of public funds in public transit subsidization and regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 236-250.
    13. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    14. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    15. Høyem, Harald & Odeck, James, 2020. "Optimal public transit frequency under stochastic demand and fixed vehicle size: Application in the Norwegian car ferry sector," Research in Transportation Economics, Elsevier, vol. 82(C).
    16. Owen Bulla & Juan Carlos Muñoz & Hugo Silva, 2019. "The impact of fare-free public transport on travel behavior: evidence," Documentos de Trabajo 531, Instituto de Economia. Pontificia Universidad Católica de Chile..
    17. Bull, Owen & Muñoz, Juan Carlos & Silva, Hugo E., 2021. "The impact of fare-free public transport on travel behavior: Evidence from a randomized controlled trial," Regional Science and Urban Economics, Elsevier, vol. 86(C).
    18. Tirachini, Alejandro & Proost, Stef, 2021. "Transport taxes and subsidies in developing countries: The effect of income inequality aversion," Economics of Transportation, Elsevier, vol. 25(C).
    19. Hörcher, Daniel & De Borger, Bruno & Graham, Daniel J., 2023. "Subsidised transport services in a fiscal federation: Why local governments may be against decentralised service provision," Economics of Transportation, Elsevier, vol. 34(C).
    20. Xuto, Praj & Anderson, Richard J. & Graham, Daniel J. & Hörcher, Daniel, 2021. "Optimal infrastructure reinvestment in urban rail systems: A dynamic supply optimisation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 251-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:142:y:2020:i:c:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.