IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v148y2021icp353-378.html
   My bibliography  Save this article

Time-dependent transit fare optimization with elastic and spatially distributed demand

Author

Listed:
  • Guo, Qianwen
  • Sun, Yanshuo
  • Schonfeld, Paul
  • Li, Zhongfei

Abstract

Motivated by the lack of microeconomic models that optimize time-dependent transit fares based on realistic demand formulations, this paper presents a microeconomic model for the design of a time-dependent transit pricing scheme considering elastic and spatiotemporally distributed demand. To model the spatial distribution of demand, a transit line with multiple origin–destination pairs is considered. To model the cyclical demand fluctuations, transit operations in one day are divided into multiple time periods. In the proposed model we optimize fares, headway, vehicle capacity, and maximum fleet size, with the objective of maximizing social welfare, subject to fleet size and vehicle capacity constraints. We find time-dependent pricing could avoid cross-subsidization among travelers in different time periods. Under both pricing schemes, the time-dependent headways satisfy the same optimality condition: the total rider waiting cost equals the total fixed cost on the supplier side. We also demonstrate that both resource constraints (vehicle capacity and fleet size) can be binding in multiple time periods, unlike the usual assumption in the literature that resource constraints are binding only in the period with the highest demand. Two extensions (considering a financial constraint and a variable roundtrip time) are also investigated. The developed models can be used to facilitate the design of time-dependent pricing schemes for practical applications.

Suggested Citation

  • Guo, Qianwen & Sun, Yanshuo & Schonfeld, Paul & Li, Zhongfei, 2021. "Time-dependent transit fare optimization with elastic and spatially distributed demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 353-378.
  • Handle: RePEc:eee:transa:v:148:y:2021:i:c:p:353-378
    DOI: 10.1016/j.tra.2021.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585642100094X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi-Chun Li & William Lam & S. Wong, 2009. "The Optimal Transit Fare Structure under Different Market Regimes with Uncertainty in the Network," Networks and Spatial Economics, Springer, vol. 9(2), pages 191-216, June.
    2. George Kocur & Chris Hendrickson, 1982. "Design of Local Bus Service with Demand Equilibration," Transportation Science, INFORMS, vol. 16(2), pages 149-170, May.
    3. Shyue Koong Chang & Schonfeld, Paul M., 1991. "Multiple period optimization of bus transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 453-478, December.
    4. Jørgensen, Finn & Pedersen, Pål Andreas, 2004. "Travel distance and optimal transport policy," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 415-430, June.
    5. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    6. Chunyan Tang & Avishai Ceder & Ying-En Ge, 2018. "Optimal public-transport operational strategies to reduce cost and vehicle’s emission," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-17, August.
    7. Huang, Di & Liu, Zhiyuan & Liu, Pan & Chen, Jun, 2016. "Optimal transit fare and service frequency of a nonlinear origin-destination based fare structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 1-19.
    8. Huang, Hai-Jun, 2002. "Pricing and logit-based mode choice models of a transit and highway system with elastic demand," European Journal of Operational Research, Elsevier, vol. 140(3), pages 562-570, August.
    9. Farber, Steven & Bartholomew, Keith & Li, Xiao & Páez, Antonio & Nurul Habib, Khandker M., 2014. "Assessing social equity in distance based transit fares using a model of travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 291-303.
    10. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    11. Sun, Yanshuo & Gong, Hengye & Guo, Qianwen & Schonfeld, Paul & Li, Zhongfei, 2020. "Regulating a public transit monopoly under asymmetric cost information," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 496-522.
    12. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2017. "Optimal fleet size, frequencies and vehicle capacities considering peak and off-peak periods in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 65-74.
    13. Zhou, Jiangping & Zhang, Min & Zhu, Pengyu, 2019. "The equity and spatial implications of transit fare," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 309-324.
    14. Verbich, David & El-Geneidy, Ahmed, 2017. "Public transit fare structure and social vulnerability in Montreal, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 43-53.
    15. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    16. Kraus, Marvin, 1991. "Discomfort externalities and marginal cost transit fares," Journal of Urban Economics, Elsevier, vol. 29(2), pages 249-259, March.
    17. Zhang, Junlin & Lindsey, Robin & Yang, Hai, 2018. "Public transit service frequency and fares with heterogeneous users under monopoly and alternative regulatory policies," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 190-208.
    18. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C. & Sumalee, A., 2012. "Design of a rail transit line for profit maximization in a linear transportation corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 50-70.
    19. Steven I.-J. Y. Chien & Chuck F. M. Tsai, 2007. "Optimization of Fare Structure and Service Frequency for Maximum Profitability of Transit Systems," Transportation Planning and Technology, Taylor & Francis Journals, vol. 30(5), pages 477-500, July.
    20. Talley, Wayne K., 1988. "An economic theory of the public transit firm," Transportation Research Part B: Methodological, Elsevier, vol. 22(1), pages 45-54, February.
    21. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    22. Sun, Yanshuo & Guo, Qianwen & Schonfeld, Paul & Li, Zhongfei, 2016. "Implications of the cost of public funds in public transit subsidization and regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 236-250.
    23. Daskin, Mark S. & Schofer, Joseph L. & Haghani, Ali E., 1988. "A quadratic programming model for designing and evaluating distance-based and zone fares for urban transit," Transportation Research Part B: Methodological, Elsevier, vol. 22(1), pages 25-44, February.
    24. Sun, S. & Szeto, W.Y., 2019. "Optimal sectional fare and frequency settings for transit networks with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 147-177.
    25. Kamel, Islam & Shalaby, Amer & Abdulhai, Baher, 2020. "A modelling platform for optimizing time-dependent transit fares in large-scale multimodal networks," Transport Policy, Elsevier, vol. 92(C), pages 38-54.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xueyan & Qiu, Heting & Yang, Yanni & Zhang, Hankun, 2022. "Differentiated fares depend on bus line and time for urban public transport network based on travelers’ day-to-day group behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Xudong Li & Zhongzhen Yang & Feng Lian, 2023. "Optimizing On-Demand Bus Services for Remote Areas," Sustainability, MDPI, vol. 15(9), pages 1-20, April.
    3. Wang, Qing & Zhao, Wenjing & Ma, Shoufeng & Schonfeld, Paul M. & Zheng, Yue & Xue, Dabin, 2023. "Effects of a price incentive policy on urban rail transit passengers: A case study in Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Huang, Di & Liu, Zhiyuan & Liu, Pan & Chen, Jun, 2016. "Optimal transit fare and service frequency of a nonlinear origin-destination based fare structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 1-19.
    3. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    4. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.
    5. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    6. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    7. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    8. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    9. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    10. Fielbaum, Andres, 2024. "On the relationship between free public transport, stop spacing, and optimal frequencies," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    11. Wang, Bangjuan & Liu, Chengliang & Zhang, Hong, 2022. "Where are equity and service effectiveness? A tale from public transport in Shanghai," Journal of Transport Geography, Elsevier, vol. 98(C).
    12. Hörcher, Daniel & De Borger, Bruno & Graham, Daniel J., 2023. "Subsidised transport services in a fiscal federation: Why local governments may be against decentralised service provision," Economics of Transportation, Elsevier, vol. 34(C).
    13. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2018. "The economics of seat provision in public transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 277-292.
    14. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    15. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    16. Proboste, Francisco & Muñoz, Juan Carlos & Gschwender, Antonio, 2020. "Comparing social costs of public transport networks structured around an Open and Closed BRT corridor in medium sized cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 187-212.
    17. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    18. Høyem, Harald, 2022. "Public transport frequency and risk-taking behavior," Economics of Transportation, Elsevier, vol. 30(C).
    19. Ramos, Raúl & Silva, Hugo E., 2023. "Fare evasion in public transport: How does it affect the optimal design and pricing?," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    20. Zhang, Junlin & Yang, Hai & Lindsey, Robin & Li, Xinwei, 2020. "Modeling and managing congested transit service with heterogeneous users under monopoly," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 249-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:148:y:2021:i:c:p:353-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.