IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v149y2021icp393-417.html
   My bibliography  Save this article

On the optimization of the bus network design: An analytical approach based on the three-dimensional macroscopic fundamental diagram

Author

Listed:
  • Dakic, Igor
  • Leclercq, Ludovic
  • Menendez, Monica

Abstract

Multiple factors can influence the public transport level of service. All take root in the network structure and the operating regime, i.e. how the bus lines are arranged atop the street network and how the service frequency is adjusted to meet urban mobility patterns. This is known as the bus network design problem and has been the subject of several studies. The problem is so challenging that most studies until now resort to strong assumptions such as a static description of the peak hour demand, homogeneous user behavior, and equal trip lengths. Potential effects of different types of user behavior and trip lengths patterns on the user and/or operator cost have not been investigated whatsoever. Moreover, none of the existing studies have considered the effects of bus network structure on private car users, the level of interactions between the modes, and the passenger mode choice that depends on traffic conditions.

Suggested Citation

  • Dakic, Igor & Leclercq, Ludovic & Menendez, Monica, 2021. "On the optimization of the bus network design: An analytical approach based on the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 393-417.
  • Handle: RePEc:eee:transb:v:149:y:2021:i:c:p:393-417
    DOI: 10.1016/j.trb.2021.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261521000758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2021.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    2. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    3. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    4. S. Chandana Wirasinghe & Vanolin F. Hurdle & Gordon F. Newell, 1977. "Optimal Parameters for a Coordinated Rail and Bus Transit System," Transportation Science, INFORMS, vol. 11(4), pages 359-374, November.
    5. Haitao, He & Menendez, Monica & Ilgin Guler, S., 2018. "Analytical evaluation of flexible-sharing strategies on multimodal arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 364-379.
    6. Gayah, Vikash V. & Gao, Xueyu (Shirley) & Nagle, Andrew S., 2014. "On the impacts of locally adaptive signal control on urban network stability and the Macroscopic Fundamental Diagram," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 255-268.
    7. Estrada, M. & Roca-Riu, M. & Badia, H. & Robusté, F. & Daganzo, C.F., 2011. "Design and implementation of efficient transit networks: Procedure, case study and validity test," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(9), pages 935-950, November.
    8. Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2011. "Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 278-288, January.
    9. Ouyang, Yanfeng & Nourbakhsh, Seyed Mohammad & Cassidy, Michael J., 2014. "Continuum approximation approach to bus network design under spatially heterogeneous demand," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 333-344.
    10. Loder, Allister & Dakic, Igor & Bressan, Lea & Ambühl, Lukas & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2019. "Capturing network properties with a functional form for the multi-modal macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 1-19.
    11. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    12. Ampountolas, Konstantinos & Zheng, Nan & Geroliminis, Nikolas, 2017. "Macroscopic modelling and robust control of bi-modal multi-region urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 616-637.
    13. Badia, Hugo & Argote-Cabanero, Juan & Daganzo, Carlos F., 2017. "How network structure can boost and shape the demand for bus transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 83-94.
    14. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2014. "Competitive transit network design in cities with radial street patterns," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 161-181.
    15. Gayah, Vikash V. & Daganzo, Carlos F., 2011. "Clockwise hysteresis loops in the Macroscopic Fundamental Diagram: An effect of network instability," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 643-655, May.
    16. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    17. G. F. Newell, 1979. "Some Issues Relating to the Optimal Design of Bus Routes," Transportation Science, INFORMS, vol. 13(1), pages 20-35, February.
    18. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    19. Ibarra-Rojas, O.J. & Delgado, F. & Giesen, R. & Muñoz, J.C., 2015. "Planning, operation, and control of bus transport systems: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 38-75.
    20. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    21. Zheng, Nan & Geroliminis, Nikolas, 2013. "On the distribution of urban road space for multimodal congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 326-341.
    22. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2016. "Bus network structure and mobility pattern: A monocentric analytical approach on a grid street layout," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 37-56.
    23. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    24. Chen, Haoyu & Gu, Weihua & Cassidy, Michael J. & Daganzo, Carlos F., 2015. "Optimal transit service atop ring-radial and grid street networks: A continuum approximation design method and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 755-774.
    25. Paipuri, Mahendra & Leclercq, Ludovic, 2020. "Bi-modal macroscopic traffic dynamics in a single region," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 257-290.
    26. Daganzo, Carlos F & Geroliminis, Nikolas, 2008. "An analytical approximation for the macropscopic fundamental diagram of urban traffic," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4cb8h3jm, Institute of Transportation Studies, UC Berkeley.
    27. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liping Ge & Stefan Voß & Lin Xie, 2022. "Robustness and disturbances in public transport," Public Transport, Springer, vol. 14(1), pages 191-261, March.
    2. Loder, Allister & Bliemer, Michiel C.J. & Axhausen, Kay W., 2022. "Optimal pricing and investment in a multi-modal city — Introducing a macroscopic network design problem based on the MFD," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 113-132.
    3. Khan, Zaid Saeed & Menéndez, Mónica, 2023. "Bus splitting and bus holding: A new strategy using autonomous modular buses for preventing bus bunching," Transportation Research Part A: Policy and Practice, Elsevier, vol. 177(C).
    4. Fu Wang & Manqing Ye & Hongbin Zhu & Dengjun Gu, 2022. "Optimization Method for Conventional Bus Stop Placement and the Bus Line Network Based on the Voronoi Diagram," Sustainability, MDPI, vol. 14(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirgholy, Mahyar & Shahabi, Mehrdad & Gao, H. Oliver, 2017. "Optimal design of sustainable transit systems in congested urban networks: A macroscopic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 261-285.
    2. Luo, Sida & Nie, Yu (Marco), 2020. "On the role of route choice modeling in transit sketchy design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 223-243.
    3. Loder, Allister & Dakic, Igor & Bressan, Lea & Ambühl, Lukas & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2019. "Capturing network properties with a functional form for the multi-modal macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 1-19.
    4. Dakic, Igor & Yang, Kaidi & Menendez, Monica & Chow, Joseph Y.J., 2021. "On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 38-59.
    5. Hugo Badia, 2020. "Comparison of Bus Network Structures in Face of Urban Dispersion for a Ring-Radial City," Networks and Spatial Economics, Springer, vol. 20(1), pages 233-271, March.
    6. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    7. Fournier, Nicholas, 2021. "Hybrid pedestrian and transit priority zoning policies in an urban street network: Evaluating network traffic flow impacts with analytical approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 254-274.
    8. Luo, Sida & Nie, Yu (Marco), 2020. "Paired-line hybrid transit design considering spatial heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 320-339.
    9. Orlando Barraza & Miquel Estrada, 2021. "Battery Electric Bus Network: Efficient Design and Cost Comparison of Different Powertrains," Sustainability, MDPI, vol. 13(9), pages 1-28, April.
    10. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    11. Luo, Sida & Nie, Yu (Marco), 2019. "Impact of ride-pooling on the nature of transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 175-192.
    12. Chen, Peng (Will) & Nie, Yu (Marco), 2018. "Optimal design of demand adaptive paired-line hybrid transit: Case of radial route structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 71-89.
    13. Ambühl, Lukas & Loder, Allister & Bliemer, Michiel C.J. & Menendez, Monica & Axhausen, Kay W., 2020. "A functional form with a physical meaning for the macroscopic fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 137(C), pages 119-132.
    14. Guo, Qiangqiang & Ban, Xuegang (Jeff), 2020. "Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 136(C), pages 87-109.
    15. Johari, Mansour & Keyvan-Ekbatani, Mehdi, 2024. "Macroscopic modeling of mixed bi-modal urban networks: A hybrid model of accumulation- and trip-based principles," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    16. Zhong, R.X. & Chen, C. & Huang, Y.P. & Sumalee, A. & Lam, W.H.K. & Xu, D.B., 2018. "Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-Lyapunov function approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 687-707.
    17. Proboste, Francisco & Muñoz, Juan Carlos & Gschwender, Antonio, 2020. "Comparing social costs of public transport networks structured around an Open and Closed BRT corridor in medium sized cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 187-212.
    18. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    19. Liu, Yining & Ouyang, Yanfeng, 2021. "Mobility service design via joint optimization of transit networks and demand-responsive services," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 22-41.
    20. Wu, Liyu & Gu, Weihua & Fan, Wenbo & Cassidy, Michael J., 2020. "Optimal design of transit networks fed by shared bikes," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 63-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:149:y:2021:i:c:p:393-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.