IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v190y2024ics0965856424003379.html
   My bibliography  Save this article

Improving public transportation via line-based integration of on-demand ridepooling

Author

Listed:
  • Fielbaum, Andres
  • Tirachini, Alejandro
  • Alonso-Mora, Javier

Abstract

Ride-sourcing companies have worsened congestion in numerous cities worldwide, as many users are attracted from more sustainable modes. To reverse this trend, it is crucial to leverage the technology of connecting users and vehicles online and use it to strengthen public transport, which can be achieved by integrating on-demand pooled services with existing fixed-line services. We propose an efficient and practical integration idea: namely, to complement fixed bus lines with a fleet of smaller vehicles that follow flexible (on-demand) routes side-by-side with the fixed routes, so that part of the demand that would have used the fixed line can ride the flexible service instead. With this scheme, a smaller bus fleet is required, partially compensating for the increase in operators’ costs stemming from the flexible vehicles. This integration strategy favors mostly two types of users: those traveling in low-demand periods, through lower waiting times, and those located far from the bus stops, because the on-demand vehicles can reduce their access time. We develop simulations in real-world scenarios from Santiago, Chile, and Berlin, Germany, for the cases of human-driven and automated vehicles. Results show that when vehicles are automated: (i) A small number of on-demand vehicles can reduce average walking times from approximately 12 to 2 min while reducing operators’ costs, leading to a Pareto improvement, (ii) A larger number of on-demand vehicles can diminish total costs by 13%–39%, through a reduction in users’ costs, although increasing operators’ costs. If vehicles are not automated, total costs are reduced by more than 10% in all of the scenarios analyzed, but a Pareto improvement is not always possible. In general, this mixed fixed/on-demand system outperforms the use of on-demand ridepooling only. Results are more promising in Berlin, because large buses are cheaper in Santiago and run more crowded, so it is more costly to partially replace them by smaller vehicles.

Suggested Citation

  • Fielbaum, Andres & Tirachini, Alejandro & Alonso-Mora, Javier, 2024. "Improving public transportation via line-based integration of on-demand ridepooling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003379
    DOI: 10.1016/j.tra.2024.104289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424003379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andres Fielbaum & Sergio Jara-Díaz & Javier Alonso-Mora, 2024. "Beyond the last mile: different spatial strategies to integrate on-demand services into public transport in a simplified city," Public Transport, Springer, vol. 16(3), pages 855-892, October.
    2. Nicole Ronald & Russell Thompson & Stephan Winter, 2015. "Simulating Demand-responsive Transportation: A Review of Agent-based Approaches," Transport Reviews, Taylor & Francis Journals, vol. 35(4), pages 404-421, July.
    3. Dennis van Soest & Miles R. Tight & Christopher D. F. Rogers, 2020. "Exploring the distances people walk to access public transport," Transport Reviews, Taylor & Francis Journals, vol. 40(2), pages 160-182, March.
    4. Leonardo J. Basso & Hugo E. Silva, 2014. "Efficiency and Substitutability of Transit Subsidies and Other Urban Transport Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 1-33, November.
    5. Filippo Carrese & Simone Sportiello & Tolegen Zhaksylykov & Chiara Colombaroni & Stefano Carrese & Muzio Papaveri & Sergio Maria Patella, 2023. "The Integration of Shared Autonomous Vehicles in Public Transportation Services: A Systematic Review," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    6. Arthur Mahéo & Philip Kilby & Pascal Van Hentenryck, 2019. "Benders Decomposition for the Design of a Hub and Shuttle Public Transit System," Service Science, INFORMS, vol. 53(1), pages 77-88, February.
    7. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2022. "Dynamic ride-sharing impacts of greater trip demand and aggregation at stops in shared autonomous vehicle systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 114-125.
    8. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    9. Mi Diao & Hui Kong & Jinhua Zhao, 2021. "Impacts of transportation network companies on urban mobility," Nature Sustainability, Nature, vol. 4(6), pages 494-500, June.
    10. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    11. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    12. Calabrò, Giovanni & Araldo, Andrea & Oh, Simon & Seshadri, Ravi & Inturri, Giuseppe & Ben-Akiva, Moshe, 2023. "Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    13. Andrés Fielbaum & Sergio Jara-Díaz & Antonio Gschwender, 2018. "Transit Line Structures in a General Parametric City: The Role of Heuristics," Transportation Science, INFORMS, vol. 52(5), pages 1092-1105, October.
    14. Garcia-Martinez, Andres & Cascajo, Rocio & Jara-Diaz, Sergio R. & Chowdhury, Subeh & Monzon, Andres, 2018. "Transfer penalties in multimodal public transport networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 52-66.
    15. Ma, Tai-Yu & Rasulkhani, Saeid & Chow, Joseph Y.J. & Klein, Sylvain, 2019. "A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 417-442.
    16. Daganzo, Carlos F., 1984. "Checkpoint dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 315-327.
    17. Quadrifoglio, Luca & Dessouky, Maged M. & Ordóñez, Fernando, 2008. "A simulation study of demand responsive transit system design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 718-737, May.
    18. Ralf Borndörfer & Martin Grötschel & Marc E. Pfetsch, 2007. "A Column-Generation Approach to Line Planning in Public Transport," Transportation Science, INFORMS, vol. 41(1), pages 123-132, February.
    19. Durán-Hormazábal, Elsa & Tirachini, Alejandro, 2016. "Estimation of travel time variability for cars, buses, metro and door-to-door public transport trips in Santiago, Chile," Research in Transportation Economics, Elsevier, vol. 59(C), pages 26-39.
    20. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2017. "Optimal fleet size, frequencies and vehicle capacities considering peak and off-peak periods in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 65-74.
    21. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    22. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    23. Sergio Jara-Díaz & Antonio Gschwender, 2009. "The effect of financial constraints on the optimal design of public transport services," Transportation, Springer, vol. 36(1), pages 65-75, January.
    24. Kim, Jae Hong & Li, Xiangyu, 2021. "Building more housing near transit: A spatial analysis of residential densification dynamics," Transport Policy, Elsevier, vol. 114(C), pages 15-24.
    25. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    26. Ke, Jintao & Zhu, Zheng & Yang, Hai & He, Qiaochu, 2021. "Equilibrium analyses and operational designs of a coupled market with substitutive and complementary ride-sourcing services to public transits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    27. Tirachini, Alejandro & Hensher, David A., 2011. "Bus congestion, optimal infrastructure investment and the choice of a fare collection system in dedicated bus corridors," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 828-844, June.
    28. Choi, Yunkyung & Guhathakurta, Subhrajit & Pande, Anurag, 2022. "An empirical Bayes approach to quantifying the impact of transportation network companies (TNCs) operations on travel demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 269-283.
    29. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    30. Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
    31. Oke, Jimi B. & Akkinepally, Arun Prakash & Chen, Siyu & Xie, Yifei & Aboutaleb, Youssef M. & Azevedo, Carlos Lima & Zegras, P. Christopher & Ferreira, Joseph & Ben-Akiva, Moshe, 2020. "Evaluating the systemic effects of automated mobility-on-demand services via large-scale agent-based simulation of auto-dependent prototype cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 98-126.
    32. Tirachini, Alejandro, 2014. "The economics and engineering of bus stops: Spacing, design and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 37-57.
    33. Jara-Díaz, Sergio & Gschwender, Antonio & Castro, Juan Cristóbal & Lepe, Matías, 2024. "Distance traveled, transit design and optimal pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    34. Daniels, Rhonda & Mulley, Corinne, 2013. "Explaining walking distance to public transport: The dominance of public transport supply," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 5-20.
    35. Giovanni Calabro' & Andrea Araldo & Simon Oh & Ravi Seshadri & Giuseppe Inturri & Moshe Ben-Akiva, 2021. "Adaptive Transit Design: Optimizing Fixed and Demand Responsive Multi-Modal Transportation via Continuous Approximation," Papers 2112.14748, arXiv.org, revised Jan 2023.
    36. Stefan Gössling & Marcel Schröder & Philipp Späth & Tim Freytag, 2016. "Urban Space Distribution and Sustainable Transport," Transport Reviews, Taylor & Francis Journals, vol. 36(5), pages 659-679, September.
    37. Ferretto, Laura & Bruzzone, Francesco & Nocera, Silvio, 2021. "Pathways to active mobility planning," Research in Transportation Economics, Elsevier, vol. 86(C).
    38. Ben-Akiva, Moshe & Morikawa, Takayuki, 2002. "Comparing ridership attraction of rail and bus," Transport Policy, Elsevier, vol. 9(2), pages 107-116, April.
    39. Lucas, Karen, 2012. "Transport and social exclusion: Where are we now?," Transport Policy, Elsevier, vol. 20(C), pages 105-113.
    40. Nathaniel Baum-Snow, 2007. "Did Highways Cause Suburbanization?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 122(2), pages 775-805.
    41. Tirachini, Alejandro & Antoniou, Constantinos, 2020. "The economics of automated public transport: Effects on operator cost, travel time, fare and subsidy," Economics of Transportation, Elsevier, vol. 21(C).
    42. Alejandro Henao & Wesley E. Marshall, 2019. "The impact of ride-hailing on vehicle miles traveled," Transportation, Springer, vol. 46(6), pages 2173-2194, December.
    43. Kirchhoff, Peter, 1995. "Public transit research and development in Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(1), pages 1-7, January.
    44. Bürstlein, Johanna & López, David & Farooq, Bilal, 2021. "Exploring first-mile on-demand transit solutions for North American suburbia: A case study of Markham, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 261-283.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fielbaum, Andres, 2024. "On the relationship between free public transport, stop spacing, and optimal frequencies," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    2. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    3. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    4. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.
    5. Andres Fielbaum & Sergio Jara-Díaz & Javier Alonso-Mora, 2024. "Beyond the last mile: different spatial strategies to integrate on-demand services into public transport in a simplified city," Public Transport, Springer, vol. 16(3), pages 855-892, October.
    6. Høyem, Harald, 2022. "Public transport frequency and risk-taking behavior," Economics of Transportation, Elsevier, vol. 30(C).
    7. Ramos, Raúl & Silva, Hugo E., 2023. "Fare evasion in public transport: How does it affect the optimal design and pricing?," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    8. Calabrò, Giovanni & Araldo, Andrea & Oh, Simon & Seshadri, Ravi & Inturri, Giuseppe & Ben-Akiva, Moshe, 2023. "Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    9. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    10. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    11. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2018. "Do buses hinder cyclists or is it the other way around? Optimal bus fares, bus stops and cycling tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 326-346.
    12. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    13. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    14. Ihab Kaddoura & Benjamin Kickhöfer & Andreas Neumann & Alejandro Tirachini, 2015. "Agent-based optimisation of public transport supply and pricing: impacts of activity scheduling decisions and simulation randomness," Transportation, Springer, vol. 42(6), pages 1039-1061, November.
    15. García-Herrera, Alisson & Basso, Leonardo J. & Tirachini, Alejandro, 2024. "Microeconomic analysis of ridesourcing market regulation policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    16. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2017. "Cycling tolls and optimal number of bus stops: the importance of congestion and crowding," Working papers in Transport Economics 2017:10, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    17. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    18. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    19. Rich, Jeppe & Seshadri, Ravi & Jomeh, Ali Jamal & Clausen, Sofus Rasmus, 2023. "Fixed routing or demand-responsive? Agent-based modelling of autonomous first and last mile services in light-rail systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    20. Wang, Bangjuan & Liu, Chengliang & Zhang, Hong, 2022. "Where are equity and service effectiveness? A tale from public transport in Shanghai," Journal of Transport Geography, Elsevier, vol. 98(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:190:y:2024:i:c:s0965856424003379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.