IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v183y2024ics0191261524000481.html
   My bibliography  Save this article

On the relationship between free public transport, stop spacing, and optimal frequencies

Author

Listed:
  • Fielbaum, Andres

Abstract

Recent years have witnessed a reignition of the debate about free public transport, especially after a wider implementation due to the pandemic. However, most implementations have consisted of eliminating the fare without further structural adjustments, and one of the main reported concerns is that they seem to primarily attract commuters from active modes rather than car drivers. In this paper, we develop an analytical model to investigate how the design of a representative public transport line, situated in a corridor where it competes with both walking and cars, should be adjusted in response to fare reductions. We first conduct a detailed analysis of the effect of frequency and spacing on mode choice, showing that while increased frequencies attract both walkers and drivers, an increased spacing tends to attract long-distance commuters (often drivers) and discourage short-distance ones (which are more likely to walk). Hence, spacing can play a crucial role in inducing a desired mode choice.

Suggested Citation

  • Fielbaum, Andres, 2024. "On the relationship between free public transport, stop spacing, and optimal frequencies," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:transb:v:183:y:2024:i:c:s0191261524000481
    DOI: 10.1016/j.trb.2024.102924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524000481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergio R. Jara-Díaz & Antonio Gschwender, 2003. "From the Single Line Model to the Spatial Structure of Transit Services: Corridors or Direct?," Journal of Transport Economics and Policy, University of Bath, vol. 37(2), pages 261-277, May.
    2. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Restating modal investment priority with an improved model for public transport analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 1148-1168, November.
    3. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    4. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    5. Redman, Lauren & Friman, Margareta & Gärling, Tommy & Hartig, Terry, 2013. "Quality attributes of public transport that attract car users: A research review," Transport Policy, Elsevier, vol. 25(C), pages 119-127.
    6. Leonardo J. Basso & Hugo E. Silva, 2014. "Efficiency and Substitutability of Transit Subsidies and Other Urban Transport Policies," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 1-33, November.
    7. Sergio Jara-Díaz & Alejandro Tirachini, 2013. "Urban Bus Transport: Open All Doors for Boarding," Journal of Transport Economics and Policy, University of Bath, vol. 47(1), pages 91-106, January.
    8. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    9. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    10. Bigazzi, Alexander, 2019. "Comparison of marginal and average emission factors for passenger transportation modes," Applied Energy, Elsevier, vol. 242(C), pages 1460-1466.
    11. Bull, Owen & Muñoz, Juan Carlos & Silva, Hugo E., 2021. "The impact of fare-free public transport on travel behavior: Evidence from a randomized controlled trial," Regional Science and Urban Economics, Elsevier, vol. 86(C).
    12. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2014. "Competitive transit network design in cities with radial street patterns," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 161-181.
    13. Tao, Zhuolin & Zhou, Jiangping & Lin, Xiongbin & Chao, Heng & Li, Guicai, 2020. "Investigating the impacts of public transport on job accessibility in Shenzhen, China: a multi-modal approach," Land Use Policy, Elsevier, vol. 99(C).
    14. Hao Wu & David Levinson & Andrew Owen, 2021. "Commute mode share and access to jobs across US metropolitan areas," Environment and Planning B, , vol. 48(4), pages 671-684, May.
    15. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    16. Tirachini, Alejandro & Hensher, David A. & Rose, John M., 2014. "Multimodal pricing and optimal design of urban public transport: The interplay between traffic congestion and bus crowding," Transportation Research Part B: Methodological, Elsevier, vol. 61(C), pages 33-54.
    17. Javier Asensio, 2002. "Transport Mode Choice by Commuters to Barcelona's CBD," Urban Studies, Urban Studies Journal Limited, vol. 39(10), pages 1881-1895, September.
    18. Tirachini, Alejandro, 2014. "The economics and engineering of bus stops: Spacing, design and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 37-57.
    19. Bar-Yosef, Asaf & Martens, Karel & Benenson, Itzhak, 2013. "A model of the vicious cycle of a bus line," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 37-50.
    20. Oded Cats & Yusak O. Susilo & Triin Reimal, 2017. "The prospects of fare-free public transport: evidence from Tallinn," Transportation, Springer, vol. 44(5), pages 1083-1104, September.
    21. Jara-Díaz, Sergio & Gschwender, Antonio & Castro, Juan Cristóbal & Lepe, Matías, 2024. "Distance traveled, transit design and optimal pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    22. Andrés Fielbaum & Sergio Jara-Díaz & Antonio Gschwender, 2018. "Transit Line Structures in a General Parametric City: The Role of Heuristics," Transportation Science, INFORMS, vol. 52(5), pages 1092-1105, October.
    23. Daniels, Rhonda & Mulley, Corinne, 2013. "Explaining walking distance to public transport: The dominance of public transport supply," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(2), pages 5-20.
    24. Dai, Jingchen & Liu, Zhiyong & Li, Ruimin, 2021. "Improving the subway attraction for the post-COVID-19 era: The role of fare-free public transport policy," Transport Policy, Elsevier, vol. 103(C), pages 21-30.
    25. Tirachini, Alejandro & Hensher, David A. & Jara-Díaz, Sergio R., 2010. "Comparing operator and users costs of light rail, heavy rail and bus rapid transit over a radial public transport network," Research in Transportation Economics, Elsevier, vol. 29(1), pages 231-242.
    26. Cools, Mario & Fabbro, Yannick & Bellemans, Tom, 2016. "Free public transport: A socio-cognitive analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 96-107.
    27. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    28. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2017. "Optimal fleet size, frequencies and vehicle capacities considering peak and off-peak periods in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 65-74.
    29. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    30. Busch-Geertsema, Annika & Lanzendorf, Martin & Klinner, Nora, 2021. "Making public transport irresistible? The introduction of a free public transport ticket for state employees and its effects on mode use," Transport Policy, Elsevier, vol. 106(C), pages 249-261.
    31. Ouyang, Yanfeng & Nourbakhsh, Seyed Mohammad & Cassidy, Michael J., 2014. "Continuum approximation approach to bus network design under spatially heterogeneous demand," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 333-344.
    32. Tirachini, Alejandro & Antoniou, Constantinos, 2020. "The economics of automated public transport: Effects on operator cost, travel time, fare and subsidy," Economics of Transportation, Elsevier, vol. 21(C).
    33. Sergio Jara-Díaz & Antonio Gschwender, 2003. "Towards a general microeconomic model for the operation of public transport," Transport Reviews, Taylor & Francis Journals, vol. 23(4), pages 453-469, July.
    34. Sergio Jara-Díaz & Antonio Gschwender, 2009. "The effect of financial constraints on the optimal design of public transport services," Transportation, Springer, vol. 36(1), pages 65-75, January.
    35. Basso, Leonardo J. & Navarro, Matias & Silva, Hugo E., 2021. "Public transport and urban structure," Economics of Transportation, Elsevier, vol. 28(C).
    36. Sergio Jara-D'az & Antonio Gschwender & Daniel Hörcher, 2023. "Public transport: design, scale, and pricing," Chapters, in: Alejandro Tirachini & Daniel Hörcher & Erik T. Verhoef (ed.), Handbook on Transport Pricing and Financing, chapter 9, pages 171-189, Edward Elgar Publishing.
    37. Javier Durán-Micco & Pieter Vansteenwegen, 2022. "A survey on the transit network design and frequency setting problem," Public Transport, Springer, vol. 14(1), pages 155-190, March.
    38. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2016. "Optimal public transport networks for a general urban structure," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 298-313.
    39. Vickerman, Roger, 2021. "Will Covid-19 put the public back in public transport? A UK perspective," Transport Policy, Elsevier, vol. 103(C), pages 95-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    3. Coulombel, Nicolas & Monchambert, Guillaume, 2023. "Diseconomies of scale and subsidies in urban public transportation," Journal of Public Economics, Elsevier, vol. 223(C).
    4. Daniel Hörcher & Daniel J. Graham, 2021. "The Gini index of demand imbalances in public transport," Transportation, Springer, vol. 48(5), pages 2521-2544, October.
    5. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2020. "Beyond the Mohring effect: Scale economies induced by transit lines structures design," Economics of Transportation, Elsevier, vol. 22(C).
    6. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    7. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    8. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2020. "Strategies for transit fleet design considering peak and off-peak periods using the single-line model," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 1-18.
    9. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.
    10. Proboste, Francisco & Muñoz, Juan Carlos & Gschwender, Antonio, 2020. "Comparing social costs of public transport networks structured around an Open and Closed BRT corridor in medium sized cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 187-212.
    11. Høyem, Harald, 2022. "Public transport frequency and risk-taking behavior," Economics of Transportation, Elsevier, vol. 30(C).
    12. Pandey, Ayush & Lehe, Lewis J., 2024. "Congestive mode-switching and economies of scale on a bus route," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    13. Jara-Díaz, Sergio R. & Muñoz-Paulsen, Esteban, 2022. "Lessons from the strategic design of a bimodal public transport system on a linear city," Research in Transportation Economics, Elsevier, vol. 94(C).
    14. Moccia, Luigi & Laporte, Gilbert, 2016. "Improved models for technology choice in a transit corridor with fixed demand," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 245-270.
    15. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.
    16. Ramos, Raúl & Silva, Hugo E., 2023. "Fare evasion in public transport: How does it affect the optimal design and pricing?," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    17. Börjesson, Maria & Fung, Chau Man & Proost, Stef & Yan, Zifei, 2018. "Do buses hinder cyclists or is it the other way around? Optimal bus fares, bus stops and cycling tolls," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 326-346.
    18. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    19. Wang, Bangjuan & Liu, Chengliang & Zhang, Hong, 2022. "Where are equity and service effectiveness? A tale from public transport in Shanghai," Journal of Transport Geography, Elsevier, vol. 98(C).
    20. Sergio Jara-Díaz & Antonio Gschwender & Claudia Bravo, 2018. "Total cost minimizing transit route structures considering trips towards CBD and periphery," Transportation, Springer, vol. 45(6), pages 1701-1720, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:183:y:2024:i:c:s0191261524000481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.