IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v121y2019icp21-40.html
   My bibliography  Save this article

Location of turning ratio and flow sensors for flow reconstruction in large traffic networks

Author

Listed:
  • Rodriguez-Vega, Martin
  • Canudas-de-Wit, Carlos
  • Fourati, Hassen

Abstract

In this work we examine the problem of minimizing the number of sensors needed to completely recover the vehicular flow in a steady state traffic network. We consider two possible sensor technologies: one that allows the measurement of turning ratios at a given intersection and the other that directly measures the flow in a road. We formulate an optimization problem that finds the optimal location of both types of sensors, such that a minimum number is required. To solve this problem, we propose a method that relies on the structure of the underlying graph, which has a quasi-linear computational complexity, resulting in less computing time when compared to other works in the literature. We evaluate our results using dynamical traffic simulations in synthetic networks.

Suggested Citation

  • Rodriguez-Vega, Martin & Canudas-de-Wit, Carlos & Fourati, Hassen, 2019. "Location of turning ratio and flow sensors for flow reconstruction in large traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 21-40.
  • Handle: RePEc:eee:transb:v:121:y:2019:i:c:p:21-40
    DOI: 10.1016/j.trb.2018.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518307306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Chenyi & Zhu, Ning & Ling, Shuai & Ma, Shoufeng & Huang, Yongxi, 2016. "Heterogeneous sensor location model for path reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 77-97.
    2. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    3. He, Sheng-xue, 2013. "A graphical approach to identify sensor locations for link flow inference," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 65-76.
    4. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    5. Hu, Shou-Ren & Peeta, Srinivas & Chu, Chun-Hsiao, 2009. "Identification of vehicle sensor locations for link-based network traffic applications," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 873-894, September.
    6. Ng, ManWo, 2012. "Synergistic sensor location for link flow inference without path enumeration: A node-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 781-788.
    7. Lucio Bianco & Giuseppe Confessore & Monica Gentili, 2006. "Combinatorial aspects of the sensor location problem," Annals of Operations Research, Springer, vol. 144(1), pages 201-234, April.
    8. Lucio Bianco & Giuseppe Confessore & Pierfrancesco Reverberi, 2001. "A Network Based Model for Traffic Sensor Location with Implications on O/D Matrix Estimates," Transportation Science, INFORMS, vol. 35(1), pages 50-60, February.
    9. Viti, Francesco & Rinaldi, Marco & Corman, Francesco & Tampère, Chris M.J., 2014. "Assessing partial observability in network sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 65-89.
    10. Castillo, Enrique & Calviño, Aida & Lo, Hong K. & Menéndez, José María & Grande, Zacarías, 2014. "Non-planar hole-generated networks and link flow observability based on link counters," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 239-261.
    11. Lo, Hong K. & Chen, Anthony & Castillo, Enrique, 2016. "Robust network sensor location for complete link flow observability under uncertaintyAuthor-Name: Xu, Xiangdong," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodriguez-Vega, Martin & Canudas-de-Wit, Carlos & Fourati, Hassen, 2021. "Average density estimation for urban traffic networks: Application to the Grenoble network," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 21-43.
    2. Xiaoqi Wang & Heng Ma & Xiaohan Qi & Ke Gao & Shengnan Li, 2022. "Study on the Distribution Law of Coal Seam Gas and Hydrogen Sulfide Affected by Abandoned Oil Wells," Energies, MDPI, vol. 15(9), pages 1-19, May.
    3. Li, Li & Jabari, Saif Eddin, 2019. "Position weighted backpressure intersection control for urban networks," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 435-461.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salari, Mostafa & Kattan, Lina & Lam, William H.K. & Lo, H.P. & Esfeh, Mohammad Ansari, 2019. "Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 216-251.
    2. Zhu, Ning & Fu, Chenyi & Zhang, Xuanyi & Ma, Shoufeng, 2022. "A network sensor location problem for link flow observability and estimation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 428-448.
    3. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    4. Yu, Xinyao & Ma, Shoufeng & Zhu, Ning & Lam, William H.K. & Fu, Hao, 2023. "Ensuring the robustness of link flow observation systems in sensor failure events," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    5. Fu, Chenyi & Zhu, Ning & Ling, Shuai & Ma, Shoufeng & Huang, Yongxi, 2016. "Heterogeneous sensor location model for path reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 77-97.
    6. Lo, Hong K. & Chen, Anthony & Castillo, Enrique, 2016. "Robust network sensor location for complete link flow observability under uncertaintyAuthor-Name: Xu, Xiangdong," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 1-20.
    7. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng, 2017. "A stochastic program approach for path reconstruction oriented sensor location model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 210-237.
    8. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    9. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    10. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    11. Rinaldi, Marco, 2018. "Controllability of transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 381-406.
    12. Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
    13. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    14. Castillo, Enrique & Calviño, Aida & Lo, Hong K. & Menéndez, José María & Grande, Zacarías, 2014. "Non-planar hole-generated networks and link flow observability based on link counters," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 239-261.
    15. Viti, Francesco & Rinaldi, Marco & Corman, Francesco & Tampère, Chris M.J., 2014. "Assessing partial observability in network sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 65-89.
    16. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    17. Saif Eddin Jabari & Laura Wynter, 2016. "Sensor placement with time-to-detection guarantees," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 415-433, December.
    18. Rodriguez-Vega, Martin & Canudas-de-Wit, Carlos & Fourati, Hassen, 2021. "Average density estimation for urban traffic networks: Application to the Grenoble network," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 21-43.
    19. Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    20. Xiaoqi Wang & Heng Ma & Xiaohan Qi & Ke Gao & Shengnan Li, 2022. "Study on the Distribution Law of Coal Seam Gas and Hydrogen Sulfide Affected by Abandoned Oil Wells," Energies, MDPI, vol. 15(9), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:121:y:2019:i:c:p:21-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.