IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v35y2001i1p50-60.html
   My bibliography  Save this article

A Network Based Model for Traffic Sensor Location with Implications on O/D Matrix Estimates

Author

Listed:
  • Lucio Bianco

    (Dipartimento di Informatica Sistemi e Produzione, Università di Roma “Tor Vergata,” Via di Tor Vergata 110, 00133 Rome, Italy)

  • Giuseppe Confessore

    (Istituto di Tecnologie Industriali e Automazione, Consiglio Nazionale delle Ricerche Viale Lombardia 20/A, 20131 Milano, Italy)

  • Pierfrancesco Reverberi

    (Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza,” Via Buonarroti 12, 00185 Rome, Italy)

Abstract

In this paper, we define and solve the sensor location problem (SLP), that is, we look for the minimum number and location of counting points in order to infer all traffic flows in a transport network. We set up a couple of greedy heuristics that find lower and upper bounds on the number of sensors for a set of randomly generated networks. We prove that solving the SLP implies that the Origin/Destination (O/D) matrix estimation error be always bounded. With respect to alternative sensor location strategies, simulation experiments show that: (i) measurement costs being equal, the O/D estimation error is lower, and (ii) conversely, O/D estimation error being equal, the number of sensors is smaller.

Suggested Citation

  • Lucio Bianco & Giuseppe Confessore & Pierfrancesco Reverberi, 2001. "A Network Based Model for Traffic Sensor Location with Implications on O/D Matrix Estimates," Transportation Science, INFORMS, vol. 35(1), pages 50-60, February.
  • Handle: RePEc:inm:ortrsc:v:35:y:2001:i:1:p:50-60
    DOI: 10.1287/trsc.35.1.50.10140
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.35.1.50.10140
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.35.1.50.10140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang, Hai & Zhou, Jing, 1998. "Optimal traffic counting locations for origin-destination matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 109-126, February.
    2. Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
    3. Oded Berman & Dmitry Krass & Chen Wei Xu, 1995. "Locating Discretionary Service Facilities Based on Probabilistic Customer Flows," Transportation Science, INFORMS, vol. 29(3), pages 276-290, August.
    4. Yang, Hai & Iida, Yasunori & Sasaki, Tsuna, 1991. "An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 25(5), pages 351-363, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    2. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    3. Liu, Jiangtao & Zhou, Xuesong, 2019. "Observability quantification of public transportation systems with heterogeneous data sources: An information-space projection approach based on discretized space-time network flow models," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 302-323.
    4. Rodriguez-Vega, Martin & Canudas-de-Wit, Carlos & Fourati, Hassen, 2019. "Location of turning ratio and flow sensors for flow reconstruction in large traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 21-40.
    5. Salari, Mostafa & Kattan, Lina & Lam, William H.K. & Lo, H.P. & Esfeh, Mohammad Ansari, 2019. "Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 216-251.
    6. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng, 2017. "A stochastic program approach for path reconstruction oriented sensor location model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 210-237.
    7. M. Gentili & P. Mirchandani, 2005. "Locating Active Sensors on Traffic Networks," Annals of Operations Research, Springer, vol. 136(1), pages 229-257, April.
    8. David Morrison & Susan Martonosi, 2015. "Characteristics of optimal solutions to the sensor location problem," Annals of Operations Research, Springer, vol. 226(1), pages 463-478, March.
    9. Fu, Chenyi & Zhu, Ning & Ling, Shuai & Ma, Shoufeng & Huang, Yongxi, 2016. "Heterogeneous sensor location model for path reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 77-97.
    10. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    11. Lucio Bianco & Giuseppe Confessore & Monica Gentili, 2006. "Combinatorial aspects of the sensor location problem," Annals of Operations Research, Springer, vol. 144(1), pages 201-234, April.
    12. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    13. Shi An & Lina Ma & Jian Wang, 2020. "Optimization of Traffic Detector Layout Based on Complex Network Theory," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    14. Xuesong Zhou & George F. List, 2010. "An Information-Theoretic Sensor Location Model for Traffic Origin-Destination Demand Estimation Applications," Transportation Science, INFORMS, vol. 44(2), pages 254-273, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    2. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    3. Xuesong Zhou & George F. List, 2010. "An Information-Theoretic Sensor Location Model for Traffic Origin-Destination Demand Estimation Applications," Transportation Science, INFORMS, vol. 44(2), pages 254-273, May.
    4. Cantelmo, Guido & Viti, Francesco & Cipriani, Ernesto & Nigro, Marialisa, 2018. "A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 303-320.
    5. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
    6. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    7. Simonelli, Fulvio & Marzano, Vittorio & Papola, Andrea & Vitiello, Iolanda, 2012. "A network sensor location procedure accounting for o–d matrix estimate variability," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1624-1638.
    8. Lucio Bianco & Giuseppe Confessore & Monica Gentili, 2006. "Combinatorial aspects of the sensor location problem," Annals of Operations Research, Springer, vol. 144(1), pages 201-234, April.
    9. Yang, Yudi & Fan, Yueyue, 2015. "Data dependent input control for origin–destination demand estimation using observability analysis," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 385-403.
    10. Shao, Hu & Lam, William H.K. & Sumalee, Agachai & Chen, Anthony & Hazelton, Martin L., 2014. "Estimation of mean and covariance of peak hour origin–destination demands from day-to-day traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 52-75.
    11. Xiaopeng Li & Yanfeng Ouyang, 2012. "Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures," Operations Research, INFORMS, vol. 60(5), pages 1183-1198, October.
    12. Mínguez, R. & Sánchez-Cambronero, S. & Castillo, E. & Jiménez, P., 2010. "Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 282-298, February.
    13. Lo, Hong K. & Chen, Anthony & Castillo, Enrique, 2016. "Robust network sensor location for complete link flow observability under uncertaintyAuthor-Name: Xu, Xiangdong," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 1-20.
    14. Chen, Anthony & Chootinan, Piya & Recker, Will, 2009. "Norm approximation method for handling traffic count inconsistencies in path flow estimator," Transportation Research Part B: Methodological, Elsevier, vol. 43(8-9), pages 852-872, September.
    15. Viti, Francesco & Rinaldi, Marco & Corman, Francesco & Tampère, Chris M.J., 2014. "Assessing partial observability in network sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 65-89.
    16. Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    17. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    18. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    19. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    20. Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:35:y:2001:i:1:p:50-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.