IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v144y2006i1p201-23410.1007-s10479-006-0016-9.html
   My bibliography  Save this article

Combinatorial aspects of the sensor location problem

Author

Listed:
  • Lucio Bianco
  • Giuseppe Confessore
  • Monica Gentili

Abstract

In this paper we address the Sensor Location Problem, that is the location of the minimum number of counting sensors, on the nodes of a network, in order to determine the arc flow volume of all the network. Despite the relevance of the problem from a practical point of view, there are very few contributions in the literature and no combinatorial analysis is performed to take into account particular structure of the network. We prove the problem is $$\cal N \cal P$$ -complete in different cases. We analyze special classes of graphs that are particularly interesting from an application point of view, for which we give low order polynomial solution algorithms. Copyright Springer Science+Business Media, LLC 2006

Suggested Citation

  • Lucio Bianco & Giuseppe Confessore & Monica Gentili, 2006. "Combinatorial aspects of the sensor location problem," Annals of Operations Research, Springer, vol. 144(1), pages 201-234, April.
  • Handle: RePEc:spr:annopr:v:144:y:2006:i:1:p:201-234:10.1007/s10479-006-0016-9
    DOI: 10.1007/s10479-006-0016-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0016-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0016-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oded Berman & Dmitry Krass & Chen Wei Xu, 1995. "Locating Discretionary Service Facilities Based on Probabilistic Customer Flows," Transportation Science, INFORMS, vol. 29(3), pages 276-290, August.
    2. Yang, Hai & Iida, Yasunori & Sasaki, Tsuna, 1991. "An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 25(5), pages 351-363, October.
    3. Lucio Bianco & Giuseppe Confessore & Pierfrancesco Reverberi, 2001. "A Network Based Model for Traffic Sensor Location with Implications on O/D Matrix Estimates," Transportation Science, INFORMS, vol. 35(1), pages 50-60, February.
    4. Yang, Hai & Zhou, Jing, 1998. "Optimal traffic counting locations for origin-destination matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 109-126, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    2. David Morrison & Susan Martonosi, 2015. "Characteristics of optimal solutions to the sensor location problem," Annals of Operations Research, Springer, vol. 226(1), pages 463-478, March.
    3. Castillo, Enrique & Calviño, Aida & Lo, Hong K. & Menéndez, José María & Grande, Zacarías, 2014. "Non-planar hole-generated networks and link flow observability based on link counters," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 239-261.
    4. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Reliable sensor deployment for network traffic surveillance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 218-231, January.
    5. Enrique Castillo & Pilar Jiménez & José Menéndez & María Nogal, 2013. "A Bayesian method for estimating traffic flows based on plate scanning," Transportation, Springer, vol. 40(1), pages 173-201, January.
    6. Salari, Mostafa & Kattan, Lina & Lam, William H.K. & Lo, H.P. & Esfeh, Mohammad Ansari, 2019. "Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 216-251.
    7. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    8. Lo, Hong K. & Chen, Anthony & Castillo, Enrique, 2016. "Robust network sensor location for complete link flow observability under uncertaintyAuthor-Name: Xu, Xiangdong," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 1-20.
    9. Dongya Li & Wei Wang & De Zhao, 2022. "A Practical and Sustainable Approach to Determining the Deployment Priorities of Automatic Vehicle Identification Sensors," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
    10. Rodriguez-Vega, Martin & Canudas-de-Wit, Carlos & Fourati, Hassen, 2019. "Location of turning ratio and flow sensors for flow reconstruction in large traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 21-40.
    11. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    12. Xiaopeng Li & Yanfeng Ouyang, 2012. "Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures," Operations Research, INFORMS, vol. 60(5), pages 1183-1198, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    3. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    4. M. Gentili & P. Mirchandani, 2005. "Locating Active Sensors on Traffic Networks," Annals of Operations Research, Springer, vol. 136(1), pages 229-257, April.
    5. Xuesong Zhou & George F. List, 2010. "An Information-Theoretic Sensor Location Model for Traffic Origin-Destination Demand Estimation Applications," Transportation Science, INFORMS, vol. 44(2), pages 254-273, May.
    6. Lucio Bianco & Giuseppe Confessore & Pierfrancesco Reverberi, 2001. "A Network Based Model for Traffic Sensor Location with Implications on O/D Matrix Estimates," Transportation Science, INFORMS, vol. 35(1), pages 50-60, February.
    7. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    8. Mínguez, R. & Sánchez-Cambronero, S. & Castillo, E. & Jiménez, P., 2010. "Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 282-298, February.
    9. Cantelmo, Guido & Viti, Francesco & Cipriani, Ernesto & Nigro, Marialisa, 2018. "A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 303-320.
    10. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.
    11. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    12. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    13. Bar-Gera, Hillel & Mirchandani, Pitu B. & Wu, Fan, 2006. "Evaluating the assumption of independent turning probabilities," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 903-916, December.
    14. Shi An & Lina Ma & Jian Wang, 2020. "Optimization of Traffic Detector Layout Based on Complex Network Theory," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    15. Ehlert, Anett & Bell, Michael G.H. & Grosso, Sergio, 2006. "The optimisation of traffic count locations in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 40(6), pages 460-479, July.
    16. Fu, Chenyi & Zhu, Ning & Ma, Shoufeng, 2017. "A stochastic program approach for path reconstruction oriented sensor location model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 210-237.
    17. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    18. Xiaopeng Li & Yanfeng Ouyang, 2012. "Reliable Traffic Sensor Deployment Under Probabilistic Disruptions and Generalized Surveillance Effectiveness Measures," Operations Research, INFORMS, vol. 60(5), pages 1183-1198, October.
    19. Fu, Chenyi & Zhu, Ning & Ling, Shuai & Ma, Shoufeng & Huang, Yongxi, 2016. "Heterogeneous sensor location model for path reconstruction," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 77-97.
    20. Lo, Hong K. & Chen, Anthony & Castillo, Enrique, 2016. "Robust network sensor location for complete link flow observability under uncertaintyAuthor-Name: Xu, Xiangdong," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:144:y:2006:i:1:p:201-234:10.1007/s10479-006-0016-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.