IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v49y2013icp110-122.html
   My bibliography  Save this article

Modelling the spatial interactions between workplace and residential location

Author

Listed:
  • Ibeas, Ángel
  • Cordera, Ruben
  • dell’Olio, Luigi
  • Coppola, Pierluigi

Abstract

The use of Multinomial Logit (MNL) models specification for the simulation of residential location have been often criticised due to the Independence of Irrelevant Alternatives hypothesis (IIA) which does not allow for the existence of spatial correlation between residential zones. Moreover, it is not clear when and to what extent the influence of the workplace zone and accessibility to employment affect the residential location choices made by households; in other word, whether the residing choice is conditional to the workplace, or vice versa; or if such choices (residence and work place) are joint.

Suggested Citation

  • Ibeas, Ángel & Cordera, Ruben & dell’Olio, Luigi & Coppola, Pierluigi, 2013. "Modelling the spatial interactions between workplace and residential location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 110-122.
  • Handle: RePEc:eee:transa:v:49:y:2013:i:c:p:110-122
    DOI: 10.1016/j.tra.2013.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856413000153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2013.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-424, March.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    3. Fujita,Masahisa, 1991. "Urban Economic Theory," Cambridge Books, Cambridge University Press, number 9780521396455, September.
    4. Francesca Pagliara & Alan Wilson, 2010. "The State-of-the-Art in Building Residential Location Models," Advances in Spatial Science, in: Francesca Pagliara & John Preston & David Simmonds (ed.), Residential Location Choice, pages 1-20, Springer.
    5. Eliasson, Jonas & Mattsson, Lars-Göran, 2000. "A model for integrated analysis of household location and travel choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(5), pages 375-394, June.
    6. John M. Quigley, 1976. "Housing Demand in the Short Run: An Analysis of Polytomous Choice," NBER Chapters, in: Explorations in Economic Research, Volume 3, number 1, pages 76-102, National Bureau of Economic Research, Inc.
    7. Brian Lee & Paul Waddell, 2010. "Residential mobility and location choice: a nested logit model with sampling of alternatives," Transportation, Springer, vol. 37(4), pages 587-601, July.
    8. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    9. Glaeser, Edward L., 2008. "Cities, Agglomeration, and Spatial Equilibrium," OUP Catalogue, Oxford University Press, number 9780199290444.
    10. Coppola, Pierluigi & Nuzzolo, Agostino, 2011. "Changing accessibility, dwelling price and the spatial distribution of socio-economic activities," Research in Transportation Economics, Elsevier, vol. 31(1), pages 63-71.
    11. Kingsley E. Haynes & Stewart Fotheringham, 1990. "The Impact of Space on the Application Of Discrete Choice Models," The Review of Regional Studies, Southern Regional Science Association, vol. 20(2), pages 39-49, Spring.
    12. Michel Bierlaire, 2006. "A theoretical analysis of the cross-nested logit model," Annals of Operations Research, Springer, vol. 144(1), pages 287-300, April.
    13. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    14. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2011. "Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions," Transportation, Springer, vol. 38(6), pages 933-958, November.
    15. Bhat, Chandra R. & Guo, Jessica, 2004. "A mixed spatially correlated logit model: formulation and application to residential choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 147-168, February.
    16. Paul Waddell, 2010. "Modeling Residential Location in UrbanSim," Advances in Spatial Science, in: Francesca Pagliara & John Preston & David Simmonds (ed.), Residential Location Choice, pages 165-180, Springer.
    17. Daniel McFadden, 1977. "Modelling the Choice of Residential Location," Cowles Foundation Discussion Papers 477, Cowles Foundation for Research in Economics, Yale University.
    18. S L Handy & D A Niemeier, 1997. "Measuring Accessibility: An Exploration of Issues and Alternatives," Environment and Planning A, , vol. 29(7), pages 1175-1194, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Halás, Marián & Klapka, Pavel & Kladivo, Petr, 2014. "Distance-decay functions for daily travel-to-work flows," Journal of Transport Geography, Elsevier, vol. 35(C), pages 107-119.
    2. Ioannis Baraklianos & Louafi Bouzouina & Patrick Bonnel & Hind Aissaoui, 2020. "Does the accessibility measure influence the results of residential location choice modelling?," Transportation, Springer, vol. 47(3), pages 1147-1176, June.
    3. Bouzouina, Louafi & Baraklianos, Ioannis & Bonnel, Patrick & Aissaoui, Hind, 2021. "Renters vs owners: The impact of accessibility on residential location choice. Evidence from Lyon urban area, France (1999–2013)," Transport Policy, Elsevier, vol. 109(C), pages 72-84.
    4. Nogués, Soledad & González-González, Esther & Cordera, Rubén, 2020. "New urban planning challenges under emerging autonomous mobility: evaluating backcasting scenarios and policies through an expert survey," Land Use Policy, Elsevier, vol. 95(C).
    5. Houshmand Masoumi, 2021. "Residential Location Choice in Istanbul, Tehran, and Cairo: The Importance of Commuting to Work," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
    6. Chandra, Aitichya & Sharath, M.N. & Pani, Agnivesh & Sahu, Prasanta K., 2021. "A multi-objective genetic algorithm approach to design optimal zoning systems for freight transportation planning," Journal of Transport Geography, Elsevier, vol. 92(C).
    7. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    8. Raja Gopalakrishnan & André Romano Alho & Takanori Sakai & Yusuke Hara & Lynette Cheah & Moshe Ben-Akiva, 2020. "Assessing Overnight Parking Infrastructure Policies for Commercial Vehicles in Cities Using Agent-Based Simulation," Sustainability, MDPI, vol. 12(7), pages 1-12, March.
    9. Namazi-Rad, Mohammad-Reza & Mokhtarian, Payam & Shukla, Nagesh & Munoz, Albert, 2016. "A data-driven predictive model for residential mobility in Australia – A generalised linear mixed model for repeated measured binary data," Journal of choice modelling, Elsevier, vol. 20(C), pages 49-60.
    10. Rezaei, Ali & Patterson, Zachary, 2018. "Preference stability in household location choice: Using cross-sectional data from three censuses," Research in Transportation Economics, Elsevier, vol. 67(C), pages 44-53.
    11. Li, Tongfei & Sun, Huijun & Wu, Jianjun & Ge, Ying-en, 2017. "Optimal toll of new highway in the equilibrium framework of heterogeneous households' residential location choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 123-137.
    12. Oshan, Taylor M., 2020. "Potential and pitfalls of big transport data for spatial interaction models of urban mobility," OSF Preprints gwumt, Center for Open Science.
    13. Mengyao Ren & Yaoyu Lin & Meihan Jin & Zhongyuan Duan & Yongxi Gong & Yu Liu, 2020. "Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records," Transportation, Springer, vol. 47(4), pages 1607-1629, August.
    14. Zhang, Le & Duan, Peng & Jiang, Hai, 2024. "Modeling joint row- and column-wise correlation in air passenger seat selection: A cross-nested logit approach," Journal of Air Transport Management, Elsevier, vol. 114(C).
    15. Li, Mengya & Kwan, Mei-Po & Wang, Fahui & Wang, Jun, 2018. "Using points-of-interest data to estimate commuting patterns in central Shanghai, China," Journal of Transport Geography, Elsevier, vol. 72(C), pages 201-210.
    16. Feng Ren & Jinbo Zhang & Xiuyun Yang, 2023. "Study on the Effect of Job Accessibility and Residential Location on Housing Occupancy Rate: A Case Study of Xiamen, China," Land, MDPI, vol. 12(4), pages 1-21, April.
    17. Perez-Lopez, Jose-Benito & Novales, Margarita & Orro, Alfonso, 2022. "Spatially correlated nested logit model for spatial location choice," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    2. Perez-Lopez, Jose-Benito & Novales, Margarita & Orro, Alfonso, 2022. "Spatially correlated nested logit model for spatial location choice," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 1-12.
    3. Bhat, Chandra R., 2015. "A comprehensive dwelling unit choice model accommodating psychological constructs within a search strategy for consideration set formation," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 161-188.
    4. Haque, Md Bashirul & Choudhury, Charisma & Hess, Stephane, 2020. "Understanding differences in residential location preferences between ownership and renting: A case study of London," Journal of Transport Geography, Elsevier, vol. 88(C).
    5. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    6. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    7. Stephane Hess & Denis Bolduc & John Polak, 2010. "Random covariance heterogeneity in discrete choice models," Transportation, Springer, vol. 37(3), pages 391-411, May.
    8. Bekhor, Shlomo & Prashker, Joseph N., 2008. "GEV-based destination choice models that account for unobserved similarities among alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 243-262, March.
    9. Peter Davis & Pasquale Schiraldi, 2014. "The flexible coefficient multinomial logit (FC-MNL) model of demand for differentiated products," RAND Journal of Economics, RAND Corporation, vol. 45(1), pages 32-63, March.
    10. Sener, Ipek N. & Pendyala, Ram M. & Bhat, Chandra R., 2011. "Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior," Journal of Transport Geography, Elsevier, vol. 19(2), pages 294-303.
    11. Laura Grigolon, 2021. "Blurred boundaries: A flexible approach for segmentation applied to the car market," Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
    12. Ioannis Baraklianos & Louafi Bouzouina & Patrick Bonnel & Hind Aissaoui, 2020. "Does the accessibility measure influence the results of residential location choice modelling?," Transportation, Springer, vol. 47(3), pages 1147-1176, June.
    13. Marzano, Vittorio & Papola, Andrea & Simonelli, Fulvio & Vitillo, Roberta, 2013. "A practically tractable expression of the covariances of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 1-11.
    14. Rezaei, Ali & Patterson, Zachary, 2018. "Preference stability in household location choice: Using cross-sectional data from three censuses," Research in Transportation Economics, Elsevier, vol. 67(C), pages 44-53.
    15. Drabas, Tomasz & Wu, Cheng-Lung, 2013. "Modelling air carrier choices with a Segment Specific Cross Nested Logit model," Journal of Air Transport Management, Elsevier, vol. 32(C), pages 8-16.
    16. Jia Guo & Tao Feng & Harry J. P. Timmermans, 2020. "Modeling co-dependent choice of workplace, residence and commuting mode using an error component mixed logit model," Transportation, Springer, vol. 47(2), pages 911-933, April.
    17. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    18. Bates, John J., 2024. "Pivoting from a known base when predicting choices using logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    19. Weiss, Adam & Habib, Khandker Nurul, 2017. "Examining the difference between park and ride and kiss and ride station choices using a spatially weighted error correlation (SWEC) discrete choice model," Journal of Transport Geography, Elsevier, vol. 59(C), pages 111-119.
    20. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:49:y:2013:i:c:p:110-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.