IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v114y2024ics096969972300128x.html
   My bibliography  Save this article

Modeling joint row- and column-wise correlation in air passenger seat selection: A cross-nested logit approach

Author

Listed:
  • Zhang, Le
  • Duan, Peng
  • Jiang, Hai

Abstract

Advance seat selection (ASS) fees have gradually become an important revenue generator for the carriers worldwide. In this study, we investigate air passenger seat selection behavior in the ASS service while quantifying spatial correlation structure among seats, which is novel to the literature. Specifically, we employ a Cross-Nested Logit (CNL) model that captures the joint row- and column-wise correlation among seats. The CNL model, together with the Multinomial Logit and Nested Logit models involved as benchmarks, are applied to a rich dataset of 321670 ASS records, extracted from the database of a Chinese regional carrier. The empirical results suggest that the correlation among seats arises from their similarities in both row and column dimensions, with a stronger correlation in the column dimension. And modeling such joint correlation can not only enhance the in-sample model fit, but also facilitate more accurate out-of-sample revenue prediction. Moreover, the utility parameter estimates reveal that passengers exhibit non-linear price sensitivity, representable by a power function with a rational exponent of 0.37. Additionally, passengers display heterogeneous willingness to pay influenced by their flight, booking, and personal characteristics. And seat preferences can be affected by participating in loyalty programs.

Suggested Citation

  • Zhang, Le & Duan, Peng & Jiang, Hai, 2024. "Modeling joint row- and column-wise correlation in air passenger seat selection: A cross-nested logit approach," Journal of Air Transport Management, Elsevier, vol. 114(C).
  • Handle: RePEc:eee:jaitra:v:114:y:2024:i:c:s096969972300128x
    DOI: 10.1016/j.jairtraman.2023.102485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096969972300128X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2023.102485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuo, Chung-Wei & Jou, Rong-Chang, 2017. "Willingness to pay for airlines’ premium economy class: The perspective of passengers," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 134-142.
    2. Jeon, Mi-Sun & Lee, Jang-Ho, 2020. "Estimation of willingness-to-pay for premium economy class by type of service," Journal of Air Transport Management, Elsevier, vol. 84(C).
    3. Vega, Amaya & Reynolds-Feighan, Aisling, 2009. "A methodological framework for the study of residential location and travel-to-work mode choice under central and suburban employment destination patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 401-419, May.
    4. Shao, Shuai & Kauermann, Göran & Smith, Michael Stanley, 2020. "Whether, when and which: Modelling advanced seat reservations by airline passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 490-514.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    6. Hongmin Li & Woonghee Tim Huh, 2011. "Pricing Multiple Products with the Multinomial Logit and Nested Logit Models: Concavity and Implications," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 549-563, October.
    7. Ko, Young Dae & Kwag, Sung Il & Oh, Yonghui, 2020. "An efficient airline seat reallocation algorithm considering customer dissatisfaction," Journal of Air Transport Management, Elsevier, vol. 85(C).
    8. Ren, Xinhui & Pan, Na & Jiang, Hong, 2022. "Differentiated pricing for airline ancillary services considering passenger choice behavior heterogeneity and willingness to pay," Transport Policy, Elsevier, vol. 126(C), pages 292-305.
    9. Yang, Xiaofang & Jin, Wen & Jiang, Hai & Xie, Qianyan & Shen, Wei & Han, Weijian, 2017. "Car ownership policies in China: Preferences of residents and influence on the choice of electric cars," Transport Policy, Elsevier, vol. 58(C), pages 62-71.
    10. Ibeas, Ángel & Cordera, Ruben & dell’Olio, Luigi & Coppola, Pierluigi, 2013. "Modelling the spatial interactions between workplace and residential location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 110-122.
    11. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    12. Rouncivell, Adam & Timmis, Andrew J. & Ison, Stephen G., 2018. "Willingness to pay for preferred seat selection on UK domestic flights," Journal of Air Transport Management, Elsevier, vol. 70(C), pages 57-61.
    13. Marzano, Vittorio & Papola, Andrea & Simonelli, Fulvio & Vitillo, Roberta, 2013. "A practically tractable expression of the covariances of the Cross-Nested Logit model," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 1-11.
    14. Hess, Stephane & Palma, David, 2019. "Apollo: A flexible, powerful and customisable freeware package for choice model estimation and application," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    15. Mumbower, Stacey & Garrow, Laurie A. & Newman, Jeffrey P., 2015. "Investigating airline customers’ premium coach seat purchases and implications for optimal pricing strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 53-69.
    16. Garrow, Laurie A. & Hotle, Susan & Mumbower, Stacey, 2012. "Assessment of product debundling trends in the US airline industry: Customer service and public policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 255-268.
    17. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    18. Stephane Hess & Mark Fowler & Thomas Adler & Aniss Bahreinian, 2012. "A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study," Transportation, Springer, vol. 39(3), pages 593-625, May.
    19. Hess, Stephane & Polak, John W., 2006. "Exploring the potential for cross-nesting structures in airport-choice analysis: A case-study of the Greater London area," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 63-81, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    2. Ren, Xinhui & Pan, Na & Jiang, Hong, 2022. "Differentiated pricing for airline ancillary services considering passenger choice behavior heterogeneity and willingness to pay," Transport Policy, Elsevier, vol. 126(C), pages 292-305.
    3. Bates, John J., 2024. "Pivoting from a known base when predicting choices using logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    4. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    5. José-Benito Pérez-López & Margarita Novales & Francisco-Alberto Varela-García & Alfonso Orro, 2020. "Residential Location Econometric Choice Modeling with Irregular Zoning: Common Border Spatial Correlation Metric," Networks and Spatial Economics, Springer, vol. 20(3), pages 785-802, September.
    6. Stacey Mumbower & Susan Hotle & Laurie A. Garrow, 2023. "Highly debated but still unbundled: The evolution of U.S. airline ancillary products and pricing strategies," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(4), pages 276-293, August.
    7. Shao, Shuai & Kauermann, Göran & Smith, Michael Stanley, 2020. "Whether, when and which: Modelling advanced seat reservations by airline passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 490-514.
    8. Perez-Lopez, Jose-Benito & Novales, Margarita & Orro, Alfonso, 2022. "Spatially correlated nested logit model for spatial location choice," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 1-12.
    9. Namazi-Rad, Mohammad-Reza & Mokhtarian, Payam & Shukla, Nagesh & Munoz, Albert, 2016. "A data-driven predictive model for residential mobility in Australia – A generalised linear mixed model for repeated measured binary data," Journal of choice modelling, Elsevier, vol. 20(C), pages 49-60.
    10. Marzano, Vittorio, 2014. "A simple procedure for the calculation of the covariances of any Generalized Extreme Value model," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 151-162.
    11. Tinessa, Fiore, 2021. "Closed-form random utility models with mixture distributions of random utilities: Exploring finite mixtures of qGEV models," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 262-288.
    12. Papola, Andrea, 2016. "A new random utility model with flexible correlation pattern and closed-form covariance expression: The CoRUM," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 80-96.
    13. Faza Fawzan Bastarianto & Muhammad Zudhy Irawan & Charisma Choudhury & David Palma & Imam Muthohar, 2019. "A Tour-Based Mode Choice Model for Commuters in Indonesia," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    14. Ke Wang & Chandra R. Bhat & Xin Ye, 2023. "A multinomial probit analysis of shanghai commute mode choice," Transportation, Springer, vol. 50(4), pages 1471-1495, August.
    15. Stephane Hess & Mark Fowler & Thomas Adler & Aniss Bahreinian, 2012. "A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study," Transportation, Springer, vol. 39(3), pages 593-625, May.
    16. Hai Jiang & Rui Chen & He Sun, 2017. "Multiproduct price optimization under the multilevel nested logit model," Annals of Operations Research, Springer, vol. 254(1), pages 131-164, July.
    17. Wen, Chieh-Hua & Huang, Chia-Jung & Fu, Chiang, 2020. "Incorporating continuous representation of preferences for flight departure times into stated itinerary choice modeling," Transport Policy, Elsevier, vol. 98(C), pages 10-20.
    18. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    19. Xi Chen & Zachary Owen & Clark Pixton & David Simchi-Levi, 2022. "A Statistical Learning Approach to Personalization in Revenue Management," Management Science, INFORMS, vol. 68(3), pages 1923-1937, March.
    20. Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:114:y:2024:i:c:s096969972300128x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.