IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v35y2001i6p539-559.html
   My bibliography  Save this article

Coping with unreliability in public transport chains: A case study for Netherlands

Author

Listed:
  • Rietveld, P.
  • Bruinsma, F. R.
  • van Vuuren, D. J.

Abstract

Unreliability in public transport means that actual departure and arrival times may deviate from the official timetable. Data on unreliability are usually unimodal. In this article we address unreliability from a multimodal perspective, implying a shift of attention away from the supplier towards the customer. Estimates of unreliability of public transport chains in Netherlands are provided. In addition, customer valuation of unreliability is estimated. We find that the valuation of a certain travel time loss of 1 min is 27 cents, whereas the valuation of a 50% probability of a 2 min delay is 64 cents. This implies a strong attitude of risk aversion towards travel time of passengers. On the basis of these values an evaluation of probability enhancing strategies has been carried out. We conclude that among the most promising means of improving the overall quality of the chains is that travellers use the bicycle as an entrance or exit mode. Other measures which are relatively inexpensive to implement and result in fairly large gains for the average public transport passenger, are an increase in transfer times and a strict constraint on bus drivers to prevent them from departing early.

Suggested Citation

  • Rietveld, P. & Bruinsma, F. R. & van Vuuren, D. J., 2001. "Coping with unreliability in public transport chains: A case study for Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 539-559, July.
  • Handle: RePEc:eee:transa:v:35:y:2001:i:6:p:539-559
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(00)00006-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allen, W. Bruce & Mahmoud, Mohamed M. & McNeil, Douglas, 1985. "The importance of time in transit and reliability of transit time for shippers, receivers, and carriers," Transportation Research Part B: Methodological, Elsevier, vol. 19(5), pages 447-456, October.
    2. F.R. Bruinsma & P. Rietveld & D.J. van Vuuren, 1999. "Unreliability in Public Transport Chains," Tinbergen Institute Discussion Papers 98-130/3, Tinbergen Institute.
    3. Bookbinder, James H. & Ahlin, Frank J., 1990. "Synchronized scheduling and random delays in urban transit," European Journal of Operational Research, Elsevier, vol. 48(2), pages 204-218, September.
    4. Randolph W. Hall, 1985. "Vehicle Scheduling at a Transportation Terminal with Random Delay en Route," Transportation Science, INFORMS, vol. 19(3), pages 308-320, August.
    5. Carey, Malachy, 1998. "Optimizing scheduled times, allowing for behavioural response," Transportation Research Part B: Methodological, Elsevier, vol. 32(5), pages 329-342, June.
    6. Hallowell, Susan F. & Harker, Patrick T., 1998. "Predicting on-time performance in scheduled railroad operations: methodology and application to train scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(4), pages 279-295, May.
    7. Carey, Malachy, 1994. "Reliability of interconnected scheduled services," European Journal of Operational Research, Elsevier, vol. 79(1), pages 51-72, November.
    8. Warren B. Powell & Yosef Sheffi, 1983. "A Probabilistic Model of Bus Route Performance," Transportation Science, INFORMS, vol. 17(4), pages 376-404, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rietveld, P. & Bruinsma, F.R. & Vuuren, D.J. van, 1999. "Coping with unreliability in public transport chains," Serie Research Memoranda 0031, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    2. Carey, Malachy, 1998. "Optimizing scheduled times, allowing for behavioural response," Transportation Research Part B: Methodological, Elsevier, vol. 32(5), pages 329-342, June.
    3. Carey, Malachy, 1999. "Ex ante heuristic measures of schedule reliability," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 473-494, September.
    4. Carey, Malachy & Kwiecinski, Andrzej, 1995. "Properties of expected costs and performance measures in stochastic models of scheduled transport," European Journal of Operational Research, Elsevier, vol. 83(1), pages 182-199, May.
    5. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    6. Chow, Andy H.F. & Pavlides, Aris, 2018. "Cost functions and multi-objective timetabling of mixed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 335-356.
    7. Wu, Cheng-Lung & Caves, Robert E., 2002. "Towards the optimisation of the schedule reliability of aircraft rotations," Journal of Air Transport Management, Elsevier, vol. 8(6), pages 419-426.
    8. Yuan, Jianxin & Hansen, Ingo A., 2007. "Optimizing capacity utilization of stations by estimating knock-on train delays," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 202-217, February.
    9. Bergström, Anna & Krüger, Niclas A., 2013. "Modeling passenger train delay distributions: evidence and implications," Working papers in Transport Economics 2013:3, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    10. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    11. Jiamin Zhao & Maged Dessouky & Satish Bukkapatnam, 2006. "Optimal Slack Time for Schedule-Based Transit Operations," Transportation Science, INFORMS, vol. 40(4), pages 529-539, November.
    12. Lu, Xiao-Yun & Gosling, Geoffrey D. & Shladover, Steven E. & Xiong, Jing & Ceder, Avi, 2006. "Development of a Modeling Framework for Analyzing Improvements in Intermodal Connectivity at California Airports," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt586755r9, Institute of Transportation Studies, UC Berkeley.
    13. Leachman, Robert C. & Jula, Payman, 2012. "Estimating flow times for containerized imports from Asia to the United States through the Western rail network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 296-309.
    14. Hall, Randolph W. & Lo, Shih-Che, 2002. "Truck Scheduling for Ground to Air Connectivity: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt85v0x577, Institute of Transportation Studies, UC Berkeley.
    15. Wout Dullaert & Bert Vernimmen & El‐houssaine Aghezzaf & Birger Raa, 2006. "Revisiting Service‐level Measurement for an Inventory System with Different Transport Modes," Transport Reviews, Taylor & Francis Journals, vol. 27(3), pages 273-283, July.
    16. Tempelmeier, Horst & Bantel, Oliver, 2015. "Integrated optimization of safety stock and transportation capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 101-112.
    17. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    18. Hallowell, Susan F. & Harker, Patrick T., 1998. "Predicting on-time performance in scheduled railroad operations: methodology and application to train scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(4), pages 279-295, May.
    19. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    20. Lam, William H.K. & Shao, Hu & Sumalee, Agachai, 2008. "Modeling impacts of adverse weather conditions on a road network with uncertainties in demand and supply," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 890-910, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:35:y:2001:i:6:p:539-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.