IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v33y1999i7p473-494.html
   My bibliography  Save this article

Ex ante heuristic measures of schedule reliability

Author

Listed:
  • Carey, Malachy

Abstract

Measures of reliability and punctuality of scheduled public transport services are important in planning, management, operating and marketing of these services. Various methods can be used to measure reliability. Analytic methods are usually practical for only very simple structured systems. Simulation methods are very time consuming and require data which may not be available. As a result, the most widely used measures are ad hoc or heuristic. However, the assumptions and properties of these measures, and the relationships between them, are seldom discussed, hence we discuss them here. We consider existing measures, extensions of these, and new measures. For specificity, we use the example of train arrivals and departures at a train station: stations with several hundred trains per day and multiple platforms are common in many countries, for example throughout Europe. Some measures of reliability are based on the observed delays, hence can be used only after the event. However, we here focus on measures which can be used in advance, for example for estimating the reliability of proposed schedules or changes in schedules at the design stage. In this we distinguish between measures which require some information about probabilities of delay and those which do not. We also distinguish between exogenous delays, which are beyond the influence of the scheduler (delays due to problems in engineering or operations), and knock-on delays which are affected by schedule design: both types are of interest for schedule reliability, but the latter are of more interest for measuring schedule robustness.

Suggested Citation

  • Carey, Malachy, 1999. "Ex ante heuristic measures of schedule reliability," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 473-494, September.
  • Handle: RePEc:eee:transb:v:33:y:1999:i:7:p:473-494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(99)00002-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allen, W. Bruce & Mahmoud, Mohamed M. & McNeil, Douglas, 1985. "The importance of time in transit and reliability of transit time for shippers, receivers, and carriers," Transportation Research Part B: Methodological, Elsevier, vol. 19(5), pages 447-456, October.
    2. Carey, Malachy, 1994. "Reliability of interconnected scheduled services," European Journal of Operational Research, Elsevier, vol. 79(1), pages 51-72, November.
    3. Carey, Malachy & Kwiecinski, Andrzej, 1995. "Properties of expected costs and performance measures in stochastic models of scheduled transport," European Journal of Operational Research, Elsevier, vol. 83(1), pages 182-199, May.
    4. Bintong Chen & Patrick T. Harker, 1990. "Two Moments Estimation of the Delay on Single-Track Rail Lines with Scheduled Traffic," Transportation Science, INFORMS, vol. 24(4), pages 261-275, November.
    5. Carey, Malachy, 1998. "Optimizing scheduled times, allowing for behavioural response," Transportation Research Part B: Methodological, Elsevier, vol. 32(5), pages 329-342, June.
    6. Hallowell, Susan F. & Harker, Patrick T., 1998. "Predicting on-time performance in scheduled railroad operations: methodology and application to train scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(4), pages 279-295, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    2. Kroon, L.G. & Dekker, R. & Vromans, M.J.C.M., 2005. "Cyclic Railway Timetabling: a Stochastic Optimization Approach," ERIM Report Series Research in Management ERS-2005-051-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    4. Mazhar Arıkan & Vinayak Deshpande & Milind Sohoni, 2013. "Building Reliable Air-Travel Infrastructure Using Empirical Data and Stochastic Models of Airline Networks," Operations Research, INFORMS, vol. 61(1), pages 45-64, February.
    5. Bugalia, Nikhil & Maemura, Yu & Ozawa, Kazumasa, 2021. "Demand risk management of private High-Speed Rail operators: A review of experiences in Japan and Taiwan," Transport Policy, Elsevier, vol. 113(C), pages 67-76.
    6. Vromans, Michiel J.C.M. & Dekker, Rommert & Kroon, Leo G., 2006. "Reliability and heterogeneity of railway services," European Journal of Operational Research, Elsevier, vol. 172(2), pages 647-665, July.
    7. Olsson, Nils O.E. & Haugland, Hans, 2004. "Influencing factors on train punctuality--results from some Norwegian studies," Transport Policy, Elsevier, vol. 11(4), pages 387-397, October.
    8. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    9. Zhi-Chun Li & William Lam & S. Wong, 2009. "The Optimal Transit Fare Structure under Different Market Regimes with Uncertainty in the Network," Networks and Spatial Economics, Springer, vol. 9(2), pages 191-216, June.
    10. Jens Parbo & Otto Anker Nielsen & Carlo Giacomo Prato, 2016. "Passenger Perspectives in Railway Timetabling: A Literature Review," Transport Reviews, Taylor & Francis Journals, vol. 36(4), pages 500-526, July.
    11. Lusby, Richard M. & Larsen, Jesper & Bull, Simon, 2018. "A survey on robustness in railway planning," European Journal of Operational Research, Elsevier, vol. 266(1), pages 1-15.
    12. Jovanović, Predrag & Kecman, Pavle & Bojović, Nebojša & Mandić, Dragomir, 2017. "Optimal allocation of buffer times to increase train schedule robustness," European Journal of Operational Research, Elsevier, vol. 256(1), pages 44-54.
    13. Chow, Andy H.F. & Pavlides, Aris, 2018. "Cost functions and multi-objective timetabling of mixed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 335-356.
    14. Wang, Shuaian & Meng, Qiang & Bell, Michael G.H., 2013. "Liner ship route capacity utilization estimation with a bounded polyhedral container shipment demand pattern," Transportation Research Part B: Methodological, Elsevier, vol. 47(C), pages 57-76.
    15. Wu, Cheng-Lung & Caves, Robert E., 2002. "Towards the optimisation of the schedule reliability of aircraft rotations," Journal of Air Transport Management, Elsevier, vol. 8(6), pages 419-426.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rietveld, P. & Bruinsma, F. R. & van Vuuren, D. J., 2001. "Coping with unreliability in public transport chains: A case study for Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(6), pages 539-559, July.
    2. Rietveld, P. & Bruinsma, F.R. & Vuuren, D.J. van, 1999. "Coping with unreliability in public transport chains," Serie Research Memoranda 0031, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    3. Wu, Cheng-Lung & Caves, Robert E., 2002. "Towards the optimisation of the schedule reliability of aircraft rotations," Journal of Air Transport Management, Elsevier, vol. 8(6), pages 419-426.
    4. Yuan, Jianxin & Hansen, Ingo A., 2007. "Optimizing capacity utilization of stations by estimating knock-on train delays," Transportation Research Part B: Methodological, Elsevier, vol. 41(2), pages 202-217, February.
    5. Carey, Malachy & Kwiecinski, Andrzej, 1995. "Properties of expected costs and performance measures in stochastic models of scheduled transport," European Journal of Operational Research, Elsevier, vol. 83(1), pages 182-199, May.
    6. Meng, Lingyun & Zhou, Xuesong, 2011. "Robust single-track train dispatching model under a dynamic and stochastic environment: A scenario-based rolling horizon solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1080-1102, August.
    7. Hallowell, Susan F. & Harker, Patrick T., 1998. "Predicting on-time performance in scheduled railroad operations: methodology and application to train scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(4), pages 279-295, May.
    8. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    9. Kroon, Leo & Maróti, Gábor & Helmrich, Mathijn Retel & Vromans, Michiel & Dekker, Rommert, 2008. "Stochastic improvement of cyclic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 553-570, July.
    10. Vromans, Michiel J.C.M. & Dekker, Rommert & Kroon, Leo G., 2006. "Reliability and heterogeneity of railway services," European Journal of Operational Research, Elsevier, vol. 172(2), pages 647-665, July.
    11. Chow, Andy H.F. & Pavlides, Aris, 2018. "Cost functions and multi-objective timetabling of mixed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 335-356.
    12. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    13. Jiamin Zhao & Maged Dessouky & Satish Bukkapatnam, 2006. "Optimal Slack Time for Schedule-Based Transit Operations," Transportation Science, INFORMS, vol. 40(4), pages 529-539, November.
    14. Leachman, Robert C. & Jula, Payman, 2012. "Estimating flow times for containerized imports from Asia to the United States through the Western rail network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 296-309.
    15. Enrique Castillo & Inmaculada Gallego & José Ureña & José Coronado, 2009. "Timetabling optimization of a single railway track line with sensitivity analysis," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 256-287, December.
    16. Wout Dullaert & Bert Vernimmen & El‐houssaine Aghezzaf & Birger Raa, 2006. "Revisiting Service‐level Measurement for an Inventory System with Different Transport Modes," Transport Reviews, Taylor & Francis Journals, vol. 27(3), pages 273-283, July.
    17. Tempelmeier, Horst & Bantel, Oliver, 2015. "Integrated optimization of safety stock and transportation capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 101-112.
    18. Fransoo, Jan C. & Bertrand, J. Will M., 2000. "An aggregate capacity estimation model for the evaluation of railroad passing constructions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(1), pages 35-49, January.
    19. William W. Wilson & Bruce L. Dahl, 2000. "Logistical Strategies and Risks in Canadian Grain Marketing," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 48(2), pages 141-160, July.
    20. Wilson, William W. & Priewe, Steven R. & Dahl, Bruce L., 1998. "Forward Shipping Options For Grain By Rail: A Strategic Risk Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 23(2), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:33:y:1999:i:7:p:473-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.