IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v31y1997i5p379-388.html
   My bibliography  Save this article

Braess paradox: Maximum penalty in a minimal critical network

Author

Listed:
  • Penchina, Claude M.

Abstract

A 'simplest anti-symmetric' two-path network is described which exhibits the well-known Braess paradox: the user travel costs being higher after the paths are joined by a transversal link (bridge). This network, herein named a 'Minimal Critical Network', clearly demonstrates the essence of the paradox with the minimum number of independent parameters, a minimum of mathematical complexity and a maximum Braess penalty. Although the Braess paradox has been studied extensively in the past, this 'simplest' network has been overlooked. The critical ranges of flow, and of user travel cost, all agree with the theorems of Frank, thus extending the validity of those theorems to a wider range of networks. Only one result, showing the effects of bridge congestion, contrasts with Frank's conclusion. Examples are given of techniques, some old and some new, which modify or eliminate this paradoxical behavior. A discussion of the good effects (non-paradoxical) of a bridge (especially a two-way bridge) is also included for the first time. Our Minimal Critical Network and graphical solution technique give a clear understanding of the paradox for this network. They are also especially useful for analysis of sensitivity to such extensions as, e.g. changes in parameters, elastic demand, general non-linear (even non-continuous) cost functions, two-way bridges, tolls and other methods to control the paradox, and diverse populations of users. We show that the paradox occurs in a simpler network than previously noted, and with a larger Braess penalty than previously noted.

Suggested Citation

  • Penchina, Claude M., 1997. "Braess paradox: Maximum penalty in a minimal critical network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(5), pages 379-388, September.
  • Handle: RePEc:eee:transa:v:31:y:1997:i:5:p:379-388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(96)00032-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dafermos, Stella & Nagurney, Anna, 1984. "On some traffic equilibrium theory paradoxes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 101-110, April.
    2. Richard Steinberg & Willard I. Zangwill, 1983. "The Prevalence of Braess' Paradox," Transportation Science, INFORMS, vol. 17(3), pages 301-318, August.
    3. Richard Steinberg & Richard E. Stone, 1988. "The Prevalence of Paradoxes in Transportation Equilibrium Problems," Transportation Science, INFORMS, vol. 22(4), pages 231-241, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sohn, Keemin, 2011. "Multi-objective optimization of a road diet network design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 499-511, July.
    2. Yang, Hai & Bell, Michael G. H., 1998. "A capacity paradox in network design and how to avoid it," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 539-545, September.
    3. Morgan, John & Orzen, Henrik & Sefton, Martin, 2009. "Network architecture and traffic flows: Experiments on the Pigou-Knight-Downs and Braess Paradoxes," Games and Economic Behavior, Elsevier, vol. 66(1), pages 348-372, May.
    4. Yao, Jia & Cheng, Ziyi & Chen, Anthony, 2023. "Bibliometric analysis and systematic literature review of the traffic paradoxes (1968–2022)," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    5. Rapoport, Amnon & Kugler, Tamar & Dugar, Subhasish & Gisches, Eyran J., 2009. "Choice of routes in congested traffic networks: Experimental tests of the Braess Paradox," Games and Economic Behavior, Elsevier, vol. 65(2), pages 538-571, March.
    6. Ashraf, Muhammad Hasan & Chen, Yuwen & Yalcin, Mehmet G., 2022. "Minding Braess Paradox amid third-party logistics hub capacity expansion triggered by demand surge," International Journal of Production Economics, Elsevier, vol. 248(C).
    7. Rapoport, Amnon & Mak, Vincent & Zwick, Rami, 2006. "Navigating congested networks with variable demand: Experimental evidence," Journal of Economic Psychology, Elsevier, vol. 27(5), pages 648-666, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei-Hua Lin & Hong K. Lo, 2009. "Investigating Braess' Paradox with Time-Dependent Queues," Transportation Science, INFORMS, vol. 43(1), pages 117-126, February.
    2. Yang, Hai, 1997. "Sensitivity analysis for the elastic-demand network equilibrium problem with applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 55-70, February.
    3. Bittihn, Stefan & Schadschneider, Andreas, 2021. "The effect of modern traffic information on Braess’ paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    4. Di, Xuan & He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2014. "Braess paradox under the boundedly rational user equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 86-108.
    5. Yang, Chao & Chen, Anthony, 2009. "Sensitivity analysis of the combined travel demand model with applications," European Journal of Operational Research, Elsevier, vol. 198(3), pages 909-921, November.
    6. Shanjiang Zhu & David Levinson & Henry Liu, 2017. "Measuring winners and losers from the new I-35W Mississippi River Bridge," Transportation, Springer, vol. 44(5), pages 905-918, September.
    7. Rapoport, Amnon & Kugler, Tamar & Dugar, Subhasish & Gisches, Eyran J., 2009. "Choice of routes in congested traffic networks: Experimental tests of the Braess Paradox," Games and Economic Behavior, Elsevier, vol. 65(2), pages 538-571, March.
    8. Pas, Eric I. & Principio, Shari L., 1997. "Braess' paradox: Some new insights," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 265-276, June.
    9. Takashi Akamatsu & Benjamin Heydecker, 2003. "Detecting Dynamic Traffic Assignment Capacity Paradoxes in Saturated Networks," Transportation Science, INFORMS, vol. 37(2), pages 123-138, May.
    10. Yao, Jia & Cheng, Ziyi & Chen, Anthony, 2023. "Bibliometric analysis and systematic literature review of the traffic paradoxes (1968–2022)," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    11. Koohyun Park, 2011. "Detecting Braess Paradox Based on Stable Dynamics in General Congested Transportation Networks," Networks and Spatial Economics, Springer, vol. 11(2), pages 207-232, June.
    12. Eyran Gisches & Amnon Rapoport, 2012. "Degrading network capacity may improve performance: private versus public monitoring in the Braess Paradox," Theory and Decision, Springer, vol. 73(2), pages 267-293, August.
    13. Rapoport, Amnon & Mak, Vincent & Zwick, Rami, 2006. "Navigating congested networks with variable demand: Experimental evidence," Journal of Economic Psychology, Elsevier, vol. 27(5), pages 648-666, October.
    14. Satoru Fujishige & Michel X. Goemans & Tobias Harks & Britta Peis & Rico Zenklusen, 2017. "Matroids Are Immune to Braess’ Paradox," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 745-761, August.
    15. Michael Patriksson, 2004. "Sensitivity Analysis of Traffic Equilibria," Transportation Science, INFORMS, vol. 38(3), pages 258-281, August.
    16. Zhao, Chunxue & Fu, Baibai & Wang, Tianming, 2014. "Braess paradox and robustness of traffic networks under stochastic user equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 135-141.
    17. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    18. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    19. Xiao Han & Yun Yu & Bin Jia & Zi‐You Gao & Rui Jiang & H. Michael Zhang, 2021. "Coordination Behavior in Mode Choice: Laboratory Study of Equilibrium Transformation and Selection," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3635-3656, October.
    20. (Walker) Wang, Wei & Wang, David Z.W. & Sun, Huijun & Feng, Zengzhe & Wu, Jianjun, 2016. "Braess Paradox of traffic networks with mixed equilibrium behaviors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 95-114.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:31:y:1997:i:5:p:379-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.