IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v31y1997i1p55-70.html
   My bibliography  Save this article

Sensitivity analysis for the elastic-demand network equilibrium problem with applications

Author

Listed:
  • Yang, Hai

Abstract

This paper presents a general framework and a rigorous approach for the quantitative analysis of the behavior of equilibrium flows with elastic demand when the problem is subjected to perturbations in network characteristics. Explicit expressions of the derivatives of the equilibrium solutions with respect to a variety of parameters associated with the supply and demand functions are derived. The derivative information will be utilized to predict changes in the equilibrium flow pattern and various system performance measures when the demand and performance characteristics of the transportation networks are altered slightly. Three numerical examples drawn from network design, congestion pricing and traffic equilibrium paradoxes are presented to highlight the sensitivity analysis method and its applications.

Suggested Citation

  • Yang, Hai, 1997. "Sensitivity analysis for the elastic-demand network equilibrium problem with applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 55-70, February.
  • Handle: RePEc:eee:transb:v:31:y:1997:i:1:p:55-70
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(96)00015-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jerzy Kyparisis, 1990. "Sensitivity Analysis for Nonlinear Programs and Variational Inequalities with Nonunique Multipliers," Mathematics of Operations Research, INFORMS, vol. 15(2), pages 286-298, May.
    2. Dafermos, Stella & Nagurney, Anna, 1984. "On some traffic equilibrium theory paradoxes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 101-110, April.
    3. Yang, Hai & Yagar, Sam & Iida, Yasunori & Asakura, Yasuo, 1994. "An algorithm for the inflow control problem on urban freeway networks with user-optimal flows," Transportation Research Part B: Methodological, Elsevier, vol. 28(2), pages 123-139, April.
    4. Nathan H. Gartner, 1980. "Optimal Traffic Assignment with Elastic Demands: A Review Part II. Algorithmic Approaches," Transportation Science, INFORMS, vol. 14(2), pages 192-208, May.
    5. Yang, Hai, 1995. "Heuristic algorithms for the bilevel origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 231-242, August.
    6. Richard Steinberg & Richard E. Stone, 1988. "The Prevalence of Paradoxes in Transportation Equilibrium Problems," Transportation Science, INFORMS, vol. 22(4), pages 231-241, November.
    7. Yang, Hai & Yagar, Sam, 1995. "Traffic assignment and signal control in saturated road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 29(2), pages 125-139, March.
    8. Yan, Hai & Lam, William H. K., 1996. "Optimal road tolls under conditions of queueing and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 319-332, September.
    9. Nathan H. Gartner, 1980. "Optimal Traffic Assignment with Elastic Demands: A Review Part I. Analysis Framework," Transportation Science, INFORMS, vol. 14(2), pages 174-191, May.
    10. Yuping Qiu & Thomas L. Magnanti, 1989. "Sensitivity Analysis for Variational Inequalities Defined on Polyhedral Sets," Mathematics of Operations Research, INFORMS, vol. 14(3), pages 410-432, August.
    11. Lawphongpanich, Siriphong & Hearn, Donald W., 1984. "Simplical decomposition of the asymmetric traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 123-133, April.
    12. Yang, Hai & Yagar, Sam, 1994. "Traffic assignment and traffic control in general freeway-arterial corridor systems," Transportation Research Part B: Methodological, Elsevier, vol. 28(6), pages 463-486, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josefsson, Magnus & Patriksson, Michael, 2007. "Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 4-31, January.
    2. Michael Patriksson, 2004. "Sensitivity Analysis of Traffic Equilibria," Transportation Science, INFORMS, vol. 38(3), pages 258-281, August.
    3. Esteve Codina & Lídia Montero, 2006. "Approximation of the steepest descent direction for the O-D matrix adjustment problem," Annals of Operations Research, Springer, vol. 144(1), pages 329-362, April.
    4. Yan, Hai & Lam, William H. K., 1996. "Optimal road tolls under conditions of queueing and congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 319-332, September.
    5. Yang, Hai, 1995. "Heuristic algorithms for the bilevel origin-destination matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 231-242, August.
    6. Yang, Hai & Bell, Michael G. H. & Meng, Qiang, 2000. "Modeling the capacity and level of service of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(4), pages 255-275, May.
    7. S. Dempe & A. Zemkoho, 2012. "Bilevel road pricing: theoretical analysis and optimality conditions," Annals of Operations Research, Springer, vol. 196(1), pages 223-240, July.
    8. Joakim Ekström & Leonid Engelson & Clas Rydergren, 2009. "Heuristic algorithms for a second-best congestion pricing problem," Netnomics, Springer, vol. 10(1), pages 85-102, April.
    9. Clegg, Janet & Smith, Mike & Xiang, Yanling & Yarrow, Robert, 2001. "Bilevel programming applied to optimising urban transportation," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 41-70, January.
    10. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    11. Michael Patriksson & R. Tyrrell Rockafellar, 2003. "Sensitivity Analysis of Aggregated Variational Inequality Problems, with Application to Traffic Equilibria," Transportation Science, INFORMS, vol. 37(1), pages 56-68, February.
    12. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    13. Rapoport, Amnon & Kugler, Tamar & Dugar, Subhasish & Gisches, Eyran J., 2009. "Choice of routes in congested traffic networks: Experimental tests of the Braess Paradox," Games and Economic Behavior, Elsevier, vol. 65(2), pages 538-571, March.
    14. Penchina, Claude M., 1997. "Braess paradox: Maximum penalty in a minimal critical network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(5), pages 379-388, September.
    15. Jin, Wen-Long, 2017. "On the stability of stationary states in general road networks," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 42-61.
    16. Wang, Aihu & Tang, Yuanhua & Mohmand, Yasir Tariq & Xu, Pei, 2022. "Modifying link capacity to avoid Braess Paradox considering elastic demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    17. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    18. Gao, Ziyou & Sun, Huijun & Shan, Lian Long, 2004. "A continuous equilibrium network design model and algorithm for transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 38(3), pages 235-250, March.
    19. Rinaldi, Marco & Tampère, Chris M.J. & Viti, Francesco, 2018. "On characterizing the relationship between route choice behaviour and optimal traffic control solution space," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 892-906.
    20. Zhang, H. M. & Ge, Y. E., 2004. "Modeling variable demand equilibrium under second-best road pricing," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 733-749, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:31:y:1997:i:1:p:55-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.