IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2112.14748.html
   My bibliography  Save this paper

Adaptive Transit Design: Optimizing Fixed and Demand Responsive Multi-Modal Transportation via Continuous Approximation

Author

Listed:
  • Giovanni Calabro'
  • Andrea Araldo
  • Simon Oh
  • Ravi Seshadri
  • Giuseppe Inturri
  • Moshe Ben-Akiva

Abstract

In most cities, transit consists solely of fixed-route transportation, whence the inherent limited Quality of Service for travellers in suburban areas and during off-peak periods. On the other hand, completely replacing fixed-route (FR) with demand-responsive (DR) transit would imply a huge operational cost. It is still unclear how to integrate DR transportation into current transit systems to take full advantage of it. We propose a Continuous Approximation model of a transit system that gets the best from fixed-route and DR transportation. Our model allows deciding whether to deploy a FR or a DR feeder, in each sub-region of an urban conurbation and each time of day, and to redesign the line frequencies and the stop spacing of the main trunk service. Since such a transit design can adapt to the spatial and temporal variation of the demand, we call it Adaptive Transit. Numerical results show that, with respect to conventional transit, Adaptive Transit significantly improves user-related cost, by drastically reducing access time to the main trunk service. Such benefits are particularly remarkable in the suburbs. Moreover, the generalized cost, including agency and user cost, is also reduced. These findings are also confirmed in scenarios with automated vehicles. Our model can assist in planning future-generation transit systems, able to improve urban mobility by appropriately combining fixed and DR transportation.

Suggested Citation

  • Giovanni Calabro' & Andrea Araldo & Simon Oh & Ravi Seshadri & Giuseppe Inturri & Moshe Ben-Akiva, 2021. "Adaptive Transit Design: Optimizing Fixed and Demand Responsive Multi-Modal Transportation via Continuous Approximation," Papers 2112.14748, arXiv.org, revised Jan 2023.
  • Handle: RePEc:arx:papers:2112.14748
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2112.14748
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    2. Wu, Liyu & Gu, Weihua & Fan, Wenbo & Cassidy, Michael J., 2020. "Optimal design of transit networks fed by shared bikes," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 63-83.
    3. Daganzo, Carlos F., 1984. "Checkpoint dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 315-327.
    4. Carlos F. Daganzo, 1987. "Increasing Model Precision Can Reduce Accuracy," Transportation Science, INFORMS, vol. 21(2), pages 100-105, May.
    5. Chen, Peng Will & Nie, Yu Marco, 2017. "Analysis of an idealized system of demand adaptive paired-line hybrid transit," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 38-54.
    6. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    7. Jara-Díaz, Sergio & Fielbaum, Andrés & Gschwender, Antonio, 2017. "Optimal fleet size, frequencies and vehicle capacities considering peak and off-peak periods in public transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 65-74.
    8. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2014. "Competitive transit network design in cities with radial street patterns," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 161-181.
    9. Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
    10. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    11. Oh, Simon & Seshadri, Ravi & Azevedo, Carlos Lima & Kumar, Nishant & Basak, Kakali & Ben-Akiva, Moshe, 2020. "Assessing the impacts of automated mobility-on-demand through agent-based simulation: A study of Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 367-388.
    12. Chen, Haoyu & Gu, Weihua & Cassidy, Michael J. & Daganzo, Carlos F., 2015. "Optimal transit service atop ring-radial and grid street networks: A continuum approximation design method and comparisons," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 755-774.
    13. An, Kun & Lo, Hong K., 2015. "Robust transit network design with stochastic demand considering development density," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 737-754.
    14. Luo, Sida & Nie, Yu (Marco), 2019. "Impact of ride-pooling on the nature of transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 175-192.
    15. Smith, Göran & Sochor, Jana & Karlsson, I.C. MariAnne, 2018. "Mobility as a Service: Development scenarios and implications for public transport," Research in Transportation Economics, Elsevier, vol. 69(C), pages 592-599.
    16. Aldaihani, Majid M. & Quadrifoglio, Luca & Dessouky, Maged M. & Hall, Randolph, 2004. "Network design for a grid hybrid transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 511-530, August.
    17. Gschwender, Antonio & Jara-Díaz, Sergio & Bravo, Claudia, 2016. "Feeder-trunk or direct lines? Economies of density, transfer costs and transit structure in an urban context," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 209-222.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rich, Jeppe & Seshadri, Ravi & Jomeh, Ali Jamal & Clausen, Sofus Rasmus, 2023. "Fixed routing or demand-responsive? Agent-based modelling of autonomous first and last mile services in light-rail systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calabrò, Giovanni & Araldo, Andrea & Oh, Simon & Seshadri, Ravi & Inturri, Giuseppe & Ben-Akiva, Moshe, 2023. "Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    2. Fan, Wenbo & Gu, Weihua & Xu, Meng, 2024. "Optimal design of ride-pooling as on-demand feeder services," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    3. Luo, Sida & Nie, Yu (Marco), 2020. "On the role of route choice modeling in transit sketchy design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 223-243.
    4. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    5. Fielbaum, Andrés & Jara-Diaz, Sergio & Gschwender, Antonio, 2021. "Lines spacing and scale economies in the strategic design of transit systems in a parametric city," Research in Transportation Economics, Elsevier, vol. 90(C).
    6. Luo, Sida & Nie, Yu (Marco), 2019. "Impact of ride-pooling on the nature of transit network design," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 175-192.
    7. Xin Li & Wanying Liu & Jingyuan Qiao & Yanhao Li & Jia Hu, 2023. "An Enhanced Semi-Flexible Transit Service with Introducing Meeting Points," Networks and Spatial Economics, Springer, vol. 23(3), pages 487-527, September.
    8. Luo, Sida & Nie, Yu (Marco), 2020. "Paired-line hybrid transit design considering spatial heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 320-339.
    9. Chen, Peng (Will) & Nie, Yu (Marco), 2018. "Optimal design of demand adaptive paired-line hybrid transit: Case of radial route structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 71-89.
    10. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    11. Liu, Yining & Ouyang, Yanfeng, 2021. "Mobility service design via joint optimization of transit networks and demand-responsive services," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 22-41.
    12. Ellegood, William A. & Campbell, James F. & North, Jeremy, 2015. "Continuous approximation models for mixed load school bus routing," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 182-198.
    13. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    14. Proboste, Francisco & Muñoz, Juan Carlos & Gschwender, Antonio, 2020. "Comparing social costs of public transport networks structured around an Open and Closed BRT corridor in medium sized cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 187-212.
    15. Rich, Jeppe & Seshadri, Ravi & Jomeh, Ali Jamal & Clausen, Sofus Rasmus, 2023. "Fixed routing or demand-responsive? Agent-based modelling of autonomous first and last mile services in light-rail systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    16. Chen, Peng Will & Nie, Yu Marco, 2017. "Analysis of an idealized system of demand adaptive paired-line hybrid transit," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 38-54.
    17. Sangveraphunsiri, Tawit & Cassidy, Michael J. & Daganzo, Carlos F., 2022. "Jitney-lite: a flexible-route feeder service for developing countries," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 1-13.
    18. Wang, Yineng & Lin, Xi & He, Fang & Li, Meng, 2022. "Designing transit-oriented multi-modal transportation systems considering travelers’ choices," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 292-327.
    19. Badia, Hugo & Estrada, Miquel & Robusté, Francesc, 2016. "Bus network structure and mobility pattern: A monocentric analytical approach on a grid street layout," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 37-56.
    20. Qiu, Feng & Shen, Jinxing & Zhang, Xuechi & An, Chengchuan, 2015. "Demi-flexible operating policies to promote the performance of public transit in low-demand areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 215-230.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2112.14748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.