IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v153y2021icp261-283.html
   My bibliography  Save this article

Exploring first-mile on-demand transit solutions for North American suburbia: A case study of Markham, Canada

Author

Listed:
  • Bürstlein, Johanna
  • López, David
  • Farooq, Bilal

Abstract

On-demand transit system designs are explored for the first-mile commuting in Markham, a suburb in the Greater Toronto Area (GTA). Operational scenarios are analysed using different types of on-demand solutions that can complement the existing GO Transit commuter train system. Various use cases of demand-responsive vehicles are explored in terms of vehicle capacity and fleet-size. It is assumed that the existing car-based trips to the four train stations in Markham would be replaced by an on-demand rideshare transit system. The on-demand transit system is simulated using the PTV MaaS Modeller in combination with a mesoscopic simulation, involving 1,865 trip requests within the morning peak from 7AM to 10AM. Wait-time, travel time, demand served, cost, and environmental impact are used as indicators to rate various options. Evaluating the results we came to the conclusion that three cases using vans are providing favourable outcomes. The van-based scenario using 75% of an optimal fleet size and a low detour factor turned out to be very appropriate with regard to the case study. A passenger in this scenario would at an average spend 3 min waiting for the service to arrive and 10 min in the vehicle, costing 7CAD for the ride. With a typical level of public transit subsidies applied, a 7% monthly saving is expected compared to using a private car and paying for parking fees. The scenario also results in 30% reduction in greenhouse gas emissions when compared to current personal vehicle based trips. Based on the simulation, policy suggestions for implementing the on-demand transit in Markham are presented.

Suggested Citation

  • Bürstlein, Johanna & López, David & Farooq, Bilal, 2021. "Exploring first-mile on-demand transit solutions for North American suburbia: A case study of Markham, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 261-283.
  • Handle: RePEc:eee:transa:v:153:y:2021:i:c:p:261-283
    DOI: 10.1016/j.tra.2021.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856421002214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2021.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Chinh Q. & Mulley, Corinne & Hensher, David A., 2020. "Public preferences for mobility as a service: Insights from stated preference surveys," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 70-90.
    2. Nicole Ronald & Russell Thompson & Stephan Winter, 2017. "Simulating ad-hoc demand-responsive transportation: a comparison of three approaches," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(3), pages 340-358, April.
    3. Sanaullah, Irum & Alsaleh, Nael & Djavadian, Shadi & Farooq, Bilal, 2021. "Spatio-temporal analysis of on-demand transit: A case study of Belleville, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 284-301.
    4. Franco, Patrizia & Johnston, Ryan & McCormick, Ecaterina, 2020. "Demand responsive transport: Generation of activity patterns from mobile phone network data to support the operation of new mobility services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 244-266.
    5. Cayford, Randall & Yim, Y. B. Youngbin, 2004. "Personalized Demand-Responsive Transit Service," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt29j111ts, Institute of Transportation Studies, UC Berkeley.
    6. Liang, Xiao & Correia, Gonçalo Homem de Almeida & van Arem, Bart, 2016. "Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 115-129.
    7. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    8. Sieber, L. & Ruch, C. & Hörl, S. & Axhausen, K.W. & Frazzoli, E., 2020. "Improved public transportation in rural areas with self-driving cars: A study on the operation of Swiss train lines," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 35-51.
    9. Cervero, Robert, 1993. "Surviving in the Suburbs: Transit's Untapped Frontier," University of California Transportation Center, Working Papers qt40v4837v, University of California Transportation Center.
    10. Becker, Henrik & Balac, Milos & Ciari, Francesco & Axhausen, Kay W., 2020. "Assessing the welfare impacts of Shared Mobility and Mobility as a Service (MaaS)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 228-243.
    11. Djavadian, Shadi & Chow, Joseph Y.J., 2017. "An agent-based day-to-day adjustment process for modeling ‘Mobility as a Service’ with a two-sided flexible transport market," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 36-57.
    12. Shen, Yu & Zhang, Hongmou & Zhao, Jinhua, 2018. "Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 125-136.
    13. Daganzo, Carlos F. & Ouyang, Yanfeng, 2019. "A general model of demand-responsive transportation services: From taxi to ridesharing to dial-a-ride," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 213-224.
    14. Chia-Nan Wang & Thanh-Tuan Dang & Tran Quynh Le & Panitan Kewcharoenwong, 2020. "Transportation Optimization Models for Intermodal Networks with Fuzzy Node Capacity, Detour Factor, and Vehicle Utilization Constraints," Mathematics, MDPI, vol. 8(12), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fielbaum, Andrés & Tirachini, Alejandro & Alonso-Mora, Javier, 2023. "Economies and diseconomies of scale in on-demand ridepooling systems," Economics of Transportation, Elsevier, vol. 34(C).
    2. Rich, Jeppe & Seshadri, Ravi & Jomeh, Ali Jamal & Clausen, Sofus Rasmus, 2023. "Fixed routing or demand-responsive? Agent-based modelling of autonomous first and last mile services in light-rail systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    3. Itani, Alaa & Klumpenhouwer, Willem & Shalaby, Amer & Hemily, Brendon, 2024. "Guiding principles for integrating on-demand transit into conventional transit networks: A review of literature and practice," Transport Policy, Elsevier, vol. 147(C), pages 183-197.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Senlei & Correia, Gonçalo Homem de Almeida & Lin, Hai Xiang, 2022. "Modeling the competition between multiple Automated Mobility on-Demand operators: An agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    3. Ma, Tai-Yu & Rasulkhani, Saeid & Chow, Joseph Y.J. & Klein, Sylvain, 2019. "A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 417-442.
    4. Lei, Chao & Ouyang, Yanfeng, 2024. "Average minimum distance to visit a subset of random points in a compact region," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    5. He, Brian Yueshuai & Zhou, Jinkai & Ma, Ziyi & Wang, Ding & Sha, Di & Lee, Mina & Chow, Joseph Y.J. & Ozbay, Kaan, 2021. "A validated multi-agent simulation test bed to evaluate congestion pricing policies on population segments by time-of-day in New York City," Transport Policy, Elsevier, vol. 101(C), pages 145-161.
    6. Daganzo, Carlos F. & Ouyang, Yanfeng & Yang, Haolin, 2020. "Analysis of ride-sharing with service time and detour guarantees," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 130-150.
    7. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2016. "Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit," ERIM Report Series Research in Management ERS-2016-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Militão, Aitan M. & Tirachini, Alejandro, 2021. "Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 52-80.
    9. Yining Liu & Yanfeng Ouyang, 2022. "Planning ride-pooling services with detour restrictions for spatially heterogeneous demand: A multi-zone queuing network approach," Papers 2208.02219, arXiv.org, revised Jun 2023.
    10. Hörcher, Daniel & Graham, Daniel J., 2020. "MaaS economics: Should we fight car ownership with subscriptions to alternative modes?," Economics of Transportation, Elsevier, vol. 22(C).
    11. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    12. Beojone, Caio Vitor & Geroliminis, Nikolas, 2023. "A dynamic multi-region MFD model for ride-sourcing with ridesplitting," Transportation Research Part B: Methodological, Elsevier, vol. 177(C).
    13. Mori, Kentaro & Miwa, Tomio & Abe, Ryosuke & Morikawa, Takayuki, 2022. "Equilibrium analysis of trip demand for autonomous taxi services in Nagoya, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 476-498.
    14. Erick Yohanes Kalengkongan & Wilson Bogar & Fitri H. Mamonto, 2022. "The Quality of Vehicles' Public Service Testing in The Tomohon Transportation Department," Technium Social Sciences Journal, Technium Science, vol. 32(1), pages 62-75, June.
    15. Berrada, Jaâfar & Poulhès, Alexis, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 317-334.
    16. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    17. Ho, Chinh Q. & Tirachini, Alejandro, 2024. "Mobility-as-a-Service and the role of multimodality in the sustainability of urban mobility in developing and developed countries," Transport Policy, Elsevier, vol. 145(C), pages 161-176.
    18. Sun, Luoyi & Teunter, Ruud H. & Babai, M. Zied & Hua, Guowei, 2019. "Optimal pricing for ride-sourcing platforms," European Journal of Operational Research, Elsevier, vol. 278(3), pages 783-795.
    19. Tom Storme & Corneel Casier & Hossein Azadi & Frank Witlox, 2021. "Impact Assessments of New Mobility Services: A Critical Review," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    20. Rich, Jeppe & Seshadri, Ravi & Jomeh, Ali Jamal & Clausen, Sofus Rasmus, 2023. "Fixed routing or demand-responsive? Agent-based modelling of autonomous first and last mile services in light-rail systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:153:y:2021:i:c:p:261-283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.